## : 1 :

# **RELATIONS AND FUNCTIONS**

#### STUDY NOTES

- Relation: A relation R from set X to a set Y is defined as a subset of the cartesian product  $X \times Y$ . It is written as  $R \subseteq \{(x, y) \in X \times Y : xRy\}$
- **Domain**: Let R be a relation from a set X to a set Y. Then the set of all the first components or Coordinate of the ordered pairs belongs to X.

Domain: of  $X = \{x : (x, y) \in R\}$ 

• Range: Let R be a relation from a set X to a set Y. Then the set of all the second components or coordinate of the ordered pair belong to R is called the range of R.

#### Types of Relations:

- \* Empty or Void Relation: If no element of X to related to any element of X, i.e.,  $R = \phi \in X \times X$ .
- Universal Relation: If each element of X is related to every element of X, i.e.,  $R = X \times X$
- \* Reflexive Relation: A relation X in a set X is
  - (i) reflexive if  $(x, x) \in X$  for every  $x \in X$ .
- (ii) Symmetric if  $(x_1, x_2) \in X$  implies that  $(x_2, x_1) \in X$  for all  $x_1, x_2 \in X$ .
- (iii) Transitive, if  $(x_1, x_2) \in X$  and  $(x_2, x_3) \in X$  implies that  $(x_1, x_3) \in X$  for all  $x_1, x_2, x_3 \in X$ .
- \* Equivalence Relation: If set X is reflexive, symmetric and transitive, then it is called an equivalence relation.
- Function: Let X and Y be two non-empty sets. A relation from X to Y, i.e., a subset of X × Y is called function.
  - \* One-One or Injective Function: A function  $X \to Y$  is injective if the images of distinct element of X under f are distinct.

For every  $x_1, x_2 \in X$ ,  $f(x_1) = f(x_2)$  implies  $x_1 = x_2$ .

[Note: Otherwise f has many images called many one.]

- \* Onto or Surjective Function: A function  $X \to Y$  is said to be onto if every element of Y is the image of some element of X under f. Such that f(x) = y.
- \* Bijective Function: A function  $f: X \to Y$  is said to be one-one and onto, if it is both.
- Composition of Functions: Let  $f: X \to Y$  and  $g: Y \to Z$ , be two functions.

Then the function  $g \circ f: X > Z$  is defined by  $(g \circ f)(x) = g(f(x))$ , for all  $x \in X$  is called composition of f and g.

- Invertible Function: A function  $X \to Y$  is invertible if,  $g: Y \to X$ . Such that  $gof = I_x$  and  $fog = I_y$ . The function g is called inverse function or invertible function. It is denoted by  $f^{-1}$ .
  - \* If  $f: X \to Y$  and  $g: Y \to Z$  are invertible function.

Then,  $(gof)^{-1} = f^{-1}og^{-1}$ .

- Binary operations: Let X be a non-empty set. A function  $f: X \times X \to X$  is called a binary operation on set X. Each ordered pair  $(a, b) \in X \times X$  to a unique element f(a, b) in X.
  - (i) a\*b = a\*a for every  $a, b \in X$
  - (ii)  $(a*b)*c = a*(b*c) \forall a, b, c \in X$
  - (iii)  $a*e = a = e*a \quad \forall \ a \in X$

#### **QUESTION BANK**

|                                                                                                                                                                                                                                   |                                                                                                        | 40201101                             |                                                   |                                       |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------------------|--|--|--|--|--|--|--|
|                                                                                                                                                                                                                                   |                                                                                                        | MULTIPLE CHOIC                       | E QUESTIONS                                       |                                       |  |  |  |  |  |  |  |
| 1                                                                                                                                                                                                                                 | 1. Let A be a set, such that the relation $I_A = \{(a, a) : a \in A\}$ on A is called:                 |                                      |                                                   |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (a) Empty relation                                                                                     |                                      | (c) Identity relation                             | (d) Universal relation                |  |  |  |  |  |  |  |
| 2.                                                                                                                                                                                                                                | 2. A function $f: A \to B$ is an onto, if:                                                             |                                      |                                                   |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (a) range = co-domain                                                                                  | (b) range = domain                   | (c) range $\in \mathbb{R}$                        | (d) range $\Rightarrow$ $(0, \infty)$ |  |  |  |  |  |  |  |
| 3.                                                                                                                                                                                                                                | 3. Let a relation X on the set of R is defined as $(a, b) \in X \to 1 + ab > 0$ for all $a, b \in R$ . |                                      |                                                   |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | Then X is:                                                                                             |                                      |                                                   |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (a) Reflexive                                                                                          |                                      | (b) Transitive                                    |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (c) Symmetric                                                                                          | W                                    | (d) Reflexive and symmetr                         | ric                                   |  |  |  |  |  |  |  |
| 4.                                                                                                                                                                                                                                | 4. Let R be a relation on set N given by : $R = \{(a, b) : a = b - 3, b > 6\}$ , then                  |                                      |                                                   |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (a) $(4, 1) \in \mathbb{R}$                                                                            | (b) $(5, 8) \in \mathbb{R}$          | (c) $(3, 8) \in \mathbb{R}$                       | (d) $(3, 6) \in \mathbb{R}$           |  |  |  |  |  |  |  |
| 5.                                                                                                                                                                                                                                | Which of the following is n                                                                            | ot equivalent relation on int        | tegers?                                           |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (a) $xRy \Leftrightarrow x = y$                                                                        |                                      | (b) $xRy \Leftrightarrow x < y$                   |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (c) $xRy \Leftrightarrow x - y$ is even                                                                |                                      | (d) $xRy \Leftrightarrow x + y$ is even           |                                       |  |  |  |  |  |  |  |
| 6.                                                                                                                                                                                                                                | Let $f: \mathbb{R} \to \mathbb{R}$ ; $f(x) = \sin x$                                                   | and $g(x) = x^3$ . Then which        | of the following is correct?                      |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (a) $gof = \sin^2 x$                                                                                   | (b) $gof = \sin x^2$                 | (c) $gof = \sin^3 x$                              | (d) $fog = (\sin x)^3$                |  |  |  |  |  |  |  |
| 7.                                                                                                                                                                                                                                | If $f: A \rightarrow A$ , $g: A \rightarrow A$ , a                                                     | re two bijections, then which        | h of the following is incorre                     | ect?                                  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (a) fog is an injection                                                                                | (b) fog is an injection              | (c) fog is an invertible                          | (d) gof does not exists               |  |  |  |  |  |  |  |
| 8.                                                                                                                                                                                                                                | Let $X = \{1, 2, 3\}$ . The number                                                                     | ber of relations having (1, 2)       | and (1, 3) are reflexive and                      | symmetric but not transitive          |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | is:                                                                                                    |                                      |                                                   |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (a) 1                                                                                                  | (b) 2                                | (c) 3                                             | (d) 4                                 |  |  |  |  |  |  |  |
| 9.                                                                                                                                                                                                                                | If a binary operation on R of                                                                          | defined by $a * b = a^2 + b^2 + b^2$ | ab, then $(2*3)*3$ is equal                       | l to :                                |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (a) 400                                                                                                | (b) 457                              | (c) 427                                           | (d) 420                               |  |  |  |  |  |  |  |
| 10.                                                                                                                                                                                                                               | If a binary operation on A, a. The identity element:                                                   | such that $A = Q \times Q$ is defi   | nd as $(a, b) * (c, d) = (ac, b)$                 | $+ ad$ ) for $(a, b), (c, d) \in A$ . |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (a) (1, 0)                                                                                             | (b) (1, 1)                           | (c) (0, 0)                                        | (d) (0, 1)                            |  |  |  |  |  |  |  |
| 11.                                                                                                                                                                                                                               | Let R be a relation on N $\times$                                                                      | N, defined as $(a, b)$ R $(c, d)$    | $\Rightarrow ad = bc \ \forall \ (a, b) \ (c, d)$ | $\in N \times N$                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | Then, which of the following is correct?                                                               |                                      |                                                   |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (I) R is reflexive                                                                                     | (II) R is symmetric                  | (III) R ts transitive                             |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (a) Only I                                                                                             | (b) Both II and III                  | (c) Both I and II                                 | (d) All I, II, and III                |  |  |  |  |  |  |  |
| 12. Sharan and Neelam are playing monopoly. The possibilities of getting number on dice is $\{1, 2, 3, 4, 5, 6\}$ make the set of possible out comes as $B = \{1, 2, 3, 4, 5, 6\}$ and set for these are $A = \{Sharan, Neelam\}$ |                                                                                                        |                                      |                                                   |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | If $R : B \to B$ defined as $R = \{(x, y) : y \text{ is divisible by } x\}$ is                         |                                      |                                                   |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (a) Reflexive Only                                                                                     |                                      | (b) Symmetrically                                 |                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | (c) Transitive and reflexive                                                                           | 2                                    | (d) Equivalence                                   |                                       |  |  |  |  |  |  |  |

13. Rekha wants of pair her cloths, she has 3 trousers and 2 shirts. She forms two sets T and S, Like

(c)  $2^3$ 

Now she wants is calculate all the possible combinations. How many combinations are possible?

 $T = \{T_1, T_2, T_3\} \text{ and } S = \{S_1, S_2\}.$ 

(b)  $2^6$ 

(a)  $2^3$ 

(d)  $3^2$ 

14. The Adventure park has a big roller coaster ride. The path traced by this will based on quadratic equation  $y = x^2 - 2$ . If  $f: \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) = x^2 - 2$ . Then  $\mathbb{R}$  is (d) Not Bijective (b) Injective (a) Bijective 15. In a mobile phone assume that there are 5 persons in the contact. If every person in the contact receives a call. Then this function will be (a) one-one (b) onto



16. Which of the following express the perimeter P of a square as a function of its area?

(d) cannot say anything

(a) 
$$4A = P$$

(c) one-one and onto

(c) 
$$A^2 = \frac{P^2}{16}$$

(b) 
$$A = \frac{P}{4}$$

(b) 
$$A = \frac{P}{4}$$
 (d)  $A = \frac{P^2}{16}$ 

17. In a home appliance showroom, the product TV, AC, Washing Machine, Toasted are discounted on sale. Three customers are interested and the function is drawn as given. This function is :



- (a) one-one
- (b) onto

(c) into-

- (d) bijective
- 18. Two different teams of boys and girls are formed for the debate competition on gender inequality.

Let  $G = \{g_1, g_2, g_3, g_4, g_5\}$  and  $B = \{b_1, b_2, b_3, b_4\}$ .

Now let  $R: G \to G$  and  $R = \{x, y : x \text{ and } y \text{ are students}\}$ 

Then the relation is:

- (a) Reflexive only
- (b) Bijective only
- (c) Equivalence
- (d) Reflexive and transitive
- 19. Let the set  $S = \{1, \omega, \omega^2 | \text{ of cube roots of unity. The identity element for multiplication on S is :}$

(b)  $\omega^2$ 

(c) ω

20. Let set A = {children in a family} and relation R is defined on it as aRb if b is brother of a. Then which of the following is correct about the given relation?

- (I) Symmetric
- (II) Reflexive
- (III) Transitive

- (a) Both (I) and (II)
- (b) Only (III)
- (c) Only (II)
- (d) Both (I) and (II)

21. If  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{1-x}$ , then what is the common domain of f + g and f - g?

- (a)  $0 \le x \le 1$
- (b)  $0 \le x < 2$
- (c) [0, 1]
- (d) none of these

22. The domain of  $\sin^{-1} \left| \log_2 \left( \frac{x}{2} \right) \right|$  is :

- (a) [1, 4]
- (b) [0, 4]
- (c) [-1, 1]
- (d) [-4, 4]

23. A token is given to all candidates with disabilities and told to come in front when their token number is announced. The function for token numbers is defined as:

$$f(t) = \begin{cases} \frac{t-1}{2} & , & \text{when } t \text{ is odd} \\ \frac{-t}{2} & , & \text{when } t \text{ is even} \end{cases}$$

Which of the following is true about the given functions?

(a) One-One but not onto

(b) Onto but not one-one

(c) One-One and Onto

- (d) Neither One-One nor Onto
- 24. A function is defined on real numbers such that f(x + y) = f(x) + f(y) for  $\forall x, y \in \mathbb{R}$ .

If f(1) = 5, then  $\sum_{r=1}^{n} f(r)$  is:

- (c)  $\frac{5n+1}{2}$
- (d)  $\frac{5n(n+1)}{2}$
- 25. Let function is defined as  $f: (-1, 1) \to X$  such that  $f(x) = \tan^{-1} \frac{2x}{1-x^2}$ . It is given that the function is both one one and onto. Which of the following is interval of X?
  - (a)  $\left(0, \frac{\pi}{2}\right)$
- (b)  $\left\lceil \frac{-\pi}{2}, \frac{\pi}{2} \right\rceil$  (c)  $\left( \frac{-\pi}{2}, \frac{\pi}{2} \right)$  (d)  $\left( 0, \frac{\pi}{2} \right)$
- 26. Rahul created a dictionary for himself. In which he wrote all the words he found to be difficult. Let W denote the words in his dictionary. The relation is defined as

 $R : R = \{(x, y) \in W \times W, \text{ the words } x \text{ and } y \text{ have at least one letter common}\}$ 

Then which of the following is correct about the given relation?

(a) Symmetric and transitive

(b) Reflexive and symmetric

(c) Reflexive and transitive

- (d) Reflexive but not symmetric and transitive
- 27. A plane is defined as  $R \times R$ , where R is real. The two subsets of given plane is given as:

 $M = \{(x, y) : y = x + 1 \text{ and } 0 < x < 2\}$ 

 $T = \{(x, y) : x - y \text{ is an integer}\}\$ 

Which of following is correct for the given subsets?

- (a) Neither M nor N is equivalence relation on R
- (b) Both M and N are equivalence relation on R
- (c) M is an equivalence relation on R but not N
- (d) N is an equivalence relation on R but not M
- 28. Let A and B are finite sets having m and n elements respectively. Find the number of mapping from A to B is:
  - (a) mn

(b)  $2^{mn}$ 

(c)  $m^n$ 

(d)  $n^m$ 

29. Which of the following graph represents one-one?







- (a) (I) and (II)
- (b) (I) and (III)
- (c) II and III
- (d) All I, II and III

- **30.** The domain of the given function :  $f(y) = \sqrt{y-1} + \sqrt{5-y}$  is :
- (b)  $(-\infty, 5)$
- (d) [1, 5]
- 31. If  $f(x) = \cos [\pi^2]x + \cos [-\pi^2]x$ , where  $[x] = \text{greatest integer} \le x$ , then
  - (a)  $f\left(\frac{\pi}{2}\right) = -1$
- (b)  $f(\pi) = 1$
- (c)  $f(-\pi) = -1$
- (d)  $f\left(\frac{\pi}{4}\right) = 2$

- **32.** The inverse of given function :  $f(x) = [1 (x 3)^4]^{1/7}$  is :
  - (a)  $3 (1 x^7)^{1/4}$

- (b)  $3 (1 + x^7)^{1/4}$  (c)  $3 + (1 x^7)^{1/4}$  (d)  $3 + (1 + x^7)^{1/4}$
- 33. Using the graph of the function f. The range of f is



- (a) [-2, 2]
- (b) [-5, 4]
- (c) [-3, 2]
- (d) [2, 2]

34. A function f(x) is defined on real numbers such that

$$f(x) = \begin{cases} x^2 + 2mx - 1 & ; & x \le 0 \\ mx - 1 & ; & x > 0 \end{cases}$$

In which of the following range the value of m is defined?

- (a)  $(-\infty, 0)$
- (b)  $(-\infty, \infty)$
- (c)  $(0, \infty)$
- (d) (0, -1)
- 35. Two functions f(x) and g(x) are defined as :  $f(x) = (x + 1)^2 \ \forall \ x \ge -1$

g(x) = Reflection of f(x) width respect to line y = x. Then which of the following is equal to g(x)?

- (a)  $-\sqrt{x}-1$ ,  $x \ge 0$  (b)  $\sqrt{x+1}$ ,  $x \ge -1$  (c)  $\frac{1}{(x+1)^2}$ ,  $x \ge -1$  (d)  $\sqrt{x}-1$ ,  $x \ge 0$

- 36. If  $f(x) = \frac{nx}{x+1}$ ,  $x \ne -1$ , for what value of f(f(x)) = x?
  - (a)  $\sqrt{2}$

(b) -1

(c) 2

(d) 1

(III) f is a rational function of x.

- 37. If  $f(x) = y = \frac{x+2}{x-1}$ , then
  - (I) x = f(y)(a) Only I
- (II) y is increases with x for x < 1. (b) Only II
  - (c) Both I and II
- (d) Both II and III

- 38. If  $f(x) = \frac{9^x}{9^x + 3}$ , then  $f\left(\frac{1}{97}\right) + f\left(\frac{2}{97}\right) + \dots + f\left(\frac{96}{97}\right)$  is equal to
  - (a) 1

(c) -48

- (d) 0
- 39. From the given diagram of functions what do you say about the function?
  - (a) Only injective
- (b) Bijective function
- (c) Only surjective
- (d) None of these



- 40. A binary operation is given as
  - \* :  $R \times R \rightarrow R$  defined by a \* b = |a b|
  - $o: R \times R \rightarrow R$  defined by aob = a

|            | (I) * is commutative                                                                                                    | (II) o is associative                                                                                                                                                                                                                                       |         |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|
|            | (III) $a * (boc) = (a * b) o (a * c)$                                                                                   | (IV) o is commutative                                                                                                                                                                                                                                       |         |  |  |  |  |
|            | (a) Only II (b) Both (I) and (III)                                                                                      | (c) Only IV (d) Both (II) and (IV)                                                                                                                                                                                                                          |         |  |  |  |  |
| 41.        | Observe the given figure and identify the incorrect sta                                                                 | tement about the given functions:                                                                                                                                                                                                                           |         |  |  |  |  |
|            | (a) 1 is the identity element                                                                                           | (1, 1)                                                                                                                                                                                                                                                      |         |  |  |  |  |
|            | (b) * is defined only 1 way                                                                                             | $\begin{pmatrix} (1,2) \\ (2,1) \end{pmatrix}$                                                                                                                                                                                                              |         |  |  |  |  |
|            | (c) 2 is the inverse of 1                                                                                               | (2, 2)                                                                                                                                                                                                                                                      | Ι       |  |  |  |  |
|            | (d) Binary functions $a \times e = 1$                                                                                   | A×A A                                                                                                                                                                                                                                                       | ,       |  |  |  |  |
| 42.        | The relation R in the set A. Such that set A define all                                                                 | the hotels in a city. The relation is defined as                                                                                                                                                                                                            |         |  |  |  |  |
|            | $R = \{(x, y) : x \text{ and } y \text{ have same number of rooms}\}$                                                   |                                                                                                                                                                                                                                                             |         |  |  |  |  |
|            | Which of the following is correct?                                                                                      |                                                                                                                                                                                                                                                             |         |  |  |  |  |
|            | (I) Symmetric relation (II) Reflexive relation                                                                          | (III) Transitive relation                                                                                                                                                                                                                                   |         |  |  |  |  |
|            | (a) Only (I) (b) Only (II)                                                                                              | (c) Both (II) and (III) (d) All (I), (II) and (III)                                                                                                                                                                                                         |         |  |  |  |  |
| 43.        | The relation R is defined in the set A of all the triang If T., T. and T. are three right triangles with the side       | les as $R = \{(T_1, T_2) : T_1 \text{ is similar to } T_2\}$ is equivalence is $(3, 4, 5)$ , $(5, 12, 13)$ and $(6, 8, 10)$ respectively. The                                                                                                               | ).<br>- |  |  |  |  |
|            | which triangle among $T_1$ , $T_2$ , and $T_3$ are related?                                                             | (0, 0, 10) respectively. The                                                                                                                                                                                                                                | L       |  |  |  |  |
|            | (a) $T_1$ is related to $T_2$ (b) $T_2$ is related to $T_3$                                                             | (c) T <sub>2</sub> is related to T <sub>2</sub> (d) T <sub>2</sub> is related to T.                                                                                                                                                                         |         |  |  |  |  |
| 44.        | A relation is defined on a set A of polygons. Such that                                                                 |                                                                                                                                                                                                                                                             |         |  |  |  |  |
|            | What is set of all elements in A related to the right triangle T with sides 3, 4 and 5?                                 |                                                                                                                                                                                                                                                             |         |  |  |  |  |
|            | (a) set of all polygons                                                                                                 | (b) set of all triangles                                                                                                                                                                                                                                    |         |  |  |  |  |
|            | (c) set of all equilateral triangles                                                                                    | (d) set of all right triangles                                                                                                                                                                                                                              |         |  |  |  |  |
| 45.        | Which of the following is incorrect function?                                                                           | (=)                                                                                                                                                                                                                                                         |         |  |  |  |  |
|            | (a) $f: \mathbb{N} \to \mathbb{N}$ given by $f(x) = x^2$ is injective                                                   | (b) $f: Z \to Z$ given by $f(x) = x^2$ not injective                                                                                                                                                                                                        |         |  |  |  |  |
|            | (c) $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ not surjective                                                 | (d) $f: Z \to Z$ given by $f(x) = x^3$ surjective                                                                                                                                                                                                           |         |  |  |  |  |
| 46.        | Signum function is:                                                                                                     |                                                                                                                                                                                                                                                             |         |  |  |  |  |
|            | (a) one-one                                                                                                             | (b) onto                                                                                                                                                                                                                                                    |         |  |  |  |  |
|            | (c) both one-one and onto                                                                                               | (d) neither one-one nor onto                                                                                                                                                                                                                                |         |  |  |  |  |
| <b>47.</b> | Let $f: \mathbb{R} \to \mathbb{R}$ is defined as $f(x) = x^{10}$ . Which of the fo                                      |                                                                                                                                                                                                                                                             |         |  |  |  |  |
|            | (a) f is one-one onto                                                                                                   | (b) f is many-one onto                                                                                                                                                                                                                                      |         |  |  |  |  |
|            | (c) f is one-one but onto                                                                                               | (d) f is neither one-one nor onto                                                                                                                                                                                                                           |         |  |  |  |  |
| 48.        | Let $*$ be the binary operation on N. It is given by $a$ $*$                                                            |                                                                                                                                                                                                                                                             |         |  |  |  |  |
|            | Then the identity of * in N is:                                                                                         |                                                                                                                                                                                                                                                             |         |  |  |  |  |
|            | (a) 0 (b) a                                                                                                             | (c) b (d) 1                                                                                                                                                                                                                                                 |         |  |  |  |  |
| 19.        | Let R be a reflexive relation on a finite set A lawing 'n                                                               | ' elements and let there be 'm' ordered pairs in R. Then                                                                                                                                                                                                    |         |  |  |  |  |
|            | (a) $m \ge n$ (b) $m \le n$                                                                                             | (c) $m = n$ (d) $m > 0$                                                                                                                                                                                                                                     |         |  |  |  |  |
|            | officer (E). The salaries provide $< 10,000, < 25,000, < $ categories A, C, M and E respectively. If $A_1, A_2,, A_5$ a | assistants (A), Clerks (C), Managers (M) and executive 50,000, and $\ref{1,00,000}$ to the people who work in the re assistants; $C_1$ , $C_2$ $C_4$ were clerks; $M_1$ , $M_2$ , $M_3$ were the relation defined by $xRy$ , where $x$ is the salary to the |         |  |  |  |  |
|            |                                                                                                                         | - *                                                                                                                                                                                                                                                         |         |  |  |  |  |

(a)  $(10000, A_3)$   $(25000, C_4)$   $(50000, M_2)$   $(100000, E_1)$  (b)  $(25000, C_4)$   $(10000, A_3)$   $(100000, E_1)$   $(50000, M_2)$  $\text{(c) } (50000, \, \text{M}_{2}) \; (100000 \, \, \text{A}_{3}) \; (25000 \, \, \text{E}_{1}) \; (10000, \, \text{M}_{2}) \; \; (\text{d) } (100000, \, \text{E}_{1}) \; (50000 \, \, \text{A}_{3}), \; (10000, \, \text{M}_{2}) \; (25000, \, \text{C}_{4})$ 

Then which of the following is incorrect

46.

47.

48.

49.

50.

## INPUT TEXT BASED QUESTIONS

51. Let  $f: A \rightarrow B$  and  $g: B \rightarrow C$  be two functions. Then the composition of f and g, denoted by g of is defined as the function gof;  $A \rightarrow C$ .  $gof(x) = g(f(x)), \forall x \in A$ 



Answer the following questions:

- (i) Let  $f: A \to B$  and  $g: B \to A$ , such that gof is an identity function on A and fog is an identity is function on B. Then,
  - (a) g = f
- (b)  $(gof)^{-1} = (fog)^{-1}$
- (c)  $g = f^{-1}$
- (d)  $(gof)^{-1} = f^{-1} og^{-1}$
- (ii) For f(x) = 2x + 3 and  $g(x) = -x^2 + 1$ , the composition function defined by  $(f \circ g)x$  is :
  - (a)  $-2x^2 + 5$
- (b)  $2x^2 + 5$
- (c)  $x^2 + 5$
- (d) -2x + 5
- (iii) Function f and g are given by,  $f(x) = \sqrt{x+2}$  and  $g(x) = \ln(1-x^2)$ . The domain of composite function  $(g \circ f)(x)$ is:
  - (a)  $(-\infty, -1)$
- (b)  $(0, \infty)$
- (c)  $(1, \infty)$
- (d)  $(-\infty, \infty)$
- (iv) Function f and g are as set of orders pair  $f = \{(-2, 1), (0, 3), (4, 5)\}; \{(-1, 1), (3, 3), (7, 9)\}.$ The range of function defined by gof x is:
  - (a)  $\{-2, 0\}$
- (b)  $\{-1, 1\}$
- (c)  $\{1, 3\}$
- (d)  $\{-3, 3\}$
- (v) For f(x) = In x, the first derivative of the composite function defined by  $F(x) = (f \circ f) x$ .

41. (c)

(b) In x

(c)  $\frac{1}{\ln x}$ 

(d)  $x \ln x$ 

|  | ANSWER |      |             | S |
|--|--------|------|-------------|---|
|  |        | - 41 | <i>(</i> () |   |

- 10. (a) 7. (d) **8.** (a) 9, (c) 6, (c) 2. (a) 3. (d) 4. (b) 5. (b) 1. (c)
- **20.** (b) **19.** (a) 15. (b) 16. (d) 17. (c) 18. (c) 14. (d) 12. (c) 13. (b) 11. (d)
- **30.** (d) 28. (d) **29.** (b) 27. (d) **26.** (b) 25. (b) 21. (c) 22. (a) 23. (c) 24. (d)
- 40. (c) 39. (b) **38.** (b) 37. (a) 34. (a) 35. (d) 36. (b) 33. (c) 32. (c) 31. (a) 49. (c) **50.** (a) 48. (d) **46.** (d) 47. (d) 45. (d) 43. (d) 44. (b)
- (v) (a) (iii) (a) (iv) (c) 51. (i) (c) (ii) (a)

## **Hints to Some Selected Questions**

- 1. (c) Here, A is called Identity Relation
- 2. (a) A function  $f: A \to B$  is an onto, if range = co-domain
- 4. (b) For the interval (5, 8)

42. (d)

$$5 = b - 3$$

b = 8

 $\forall b > 6$ 

5. (b) Reflexive:  $x \in \mathbb{R}$ 

x < x, this is not possible.

- **6.** (c)  $gof(x) = g(f(x)) = g(\sin x) = \sin^3 x$ .
- 7. (d)  $f \circ g = g \circ f$  for the given function.

- 8. (a)  $R = \{(1, 2), (1, 3), (1, 1), (2, 2), (3, 3), (2, 1), (3, 1)\}$ . Only 1 relation is possible.
- 9. (c) (2 \* 3) = 4 + 9 + 6 = 19(19 \* 3) = 361 + 9 + 57 = 427

$$(19*3) = 361 + 9 + 57 = 42^{\circ}$$

**12.** (c)  $B = \{1, 2, 3, 4, 5, 6\}$ 

$$R = \{(x, y) : y \text{ is divisible by } x\}$$

 $(x, x) \in \mathbb{R}$ 

[any number divisible by itself]

: It is reflexive.

Now,  $(2, 4) \in \mathbb{R}$ 

[as 4 is divisible by 2]

But (4, 2) ∉ R So, R is not symmetric

Let  $(x, y), (y, z) \in \mathbb{R}$ .

: z is divisible by x. Therefore, R is transitive.

- 13. (b) The total Number of reflexive relations is  $2^{n^2-n}$ .
- 14. (d)  $f: \mathbb{R} \to \mathbb{R}$

$$f(x_1) = x_1^2 - 2$$
;  $f(x_2) = x_2^2 - 2$ 

$$f(x_1) = f(x_2) \Rightarrow x_1^2 - 2 = x_2^2 - 2 \Rightarrow x_1^2 - x_2^2 = 0$$

$$(x_1 + x_2) (x_1 - x_2) = 0 \Rightarrow x_1 = \pm x_2$$

$$f(x_1) = f(x_2) \rightarrow \text{not injective}$$

- f(x) is not surjective. So, It is not bijective.
- **15.** (b)  $f: A \to B$  is onto if the range of 'f' is equal to the codomain of 'f'
- 16. (d) Let the side be x. Then,  $P = 4x \implies x = \frac{P}{4}$   $\Rightarrow A = x^2 \Rightarrow A = \frac{P^2}{16}$

$$\Rightarrow A = x^2 \Rightarrow A = \frac{P^2}{16}$$

- 17. (c) In into function, if there exists atleast one element in B which do not have image at A.
- **18.** (c) As  $(x, x) \in R$  for all  $x \in G$ . Thus, R is reflexive

Let  $(x, y) \in \mathbb{R}$ . x and y are same

 $\therefore$  y and x are also of same  $\Rightarrow$   $(y, x) \in R$ . So, R is symmetric

Let  $(x, y) \in R$ ,  $(y, z) \in R \Rightarrow (x, z) \in R$  Thus, R is transitive.

20. (b) R can not be reflexive as 'a' can not be brother of 'b'.

R cannot be symmetric as if  $(a, b) \in \mathbb{R}$ , then  $(b, a) \in \mathbb{R}$ , this is not possible.

R is transitive as, if a is brother of b and b is brother of c, then certainly a is brother of c.

21. (c)  $f(x) + g(x) = \sqrt{x} + \sqrt{1-x}$  — domain [0, 1]

$$f(x) - g(x) = \sqrt{x} - \sqrt{1-x}$$
 — domain [0, 1]

- **22.** (a)  $f(x) = \sin^{-1} \left[ \log_2 \left( \frac{x}{2} \right) \right] 1 \le \log_2 \left( \frac{x}{2} \right) \le 1 \Rightarrow 2^{-1} \le \frac{x}{2} \le 2 \Rightarrow 1 \le x \le 4 \Rightarrow x \in [1, 4]$
- 23. (c) When t is odd, values are all non-negative integers and if 't' is even values are set of all negative integers.
- **24.** (d)  $f(x + y) = f(x) + f(y) \Rightarrow f(x) = ax \Rightarrow f(1) = 5 \Rightarrow a(1) = 5 \therefore a = 5$

$$f(x) = 5x \Rightarrow \sum_{r=1}^{n} f(r) = 5 (1 + 2 + 3 + \dots n) = \frac{5n(n+1)}{2}$$

25. (b) 
$$f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \forall x \in (-1, 1)$$

Range 
$$f(x) = \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$
 and Co-domain =  $X = \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ 

**26.** (b) 
$$(x, x) \in R \ \forall \ x \in W$$

.. R is reflexive

Let  $(x, y) \in \mathbb{R}$ , then  $(y, x) \in \mathbb{R}$  as one letter is common

.. R is symmetric.

**28.** (d) The number of mapping is 
$$n \times n \times n \times \dots$$
 m times =  $n^m$ .

31. (a) 
$$[\pi^2] = 9$$
 and  $[-\pi^2] = 10$ ,

$$f(x) = \cos 9x + \cos (-10) x = \cos 9x + \cos 10x$$

$$f\left(\frac{\pi}{2}\right) = -1$$

32. (c) f(x) is one-one and onto

$$f(x) = [1 - (x - 3)^4]^{1/7} \Rightarrow (x - 3)^4 = 1 - (f(x))^7 \Rightarrow x = 3 + [1 - (f(x))^7]^{1/4}$$
  
$$f^{-1}(x) = 3 + (1 - x^7)^{1/4}$$

33. (c) Since the graph lies between 
$$f(-1) = -3$$
 and  $f(2) = 2$ . Hence the range is  $[-3, 2]$ 

34. (a) 
$$x^2 + 2mx - 1$$
 forms a parabola.

$$mx - 1$$
 forms a line  $\Rightarrow m \in (-\infty, 0)$ 

m > 0 not possible, as it is one-one function.

35. (d) 
$$g(x)$$
 will be inverse of  $f(x)$ .

$$y = (x + 1)^2 \Rightarrow \sqrt{y} = x + 1 \Rightarrow x = \sqrt{y} - 1$$

$$f^{-1}(x) = -1 + \sqrt{x} : x \ge 0$$

37. (a) 
$$f(y) = f\left(\frac{x+2}{x-1}\right) = \frac{\frac{x+2}{x-1} + 2}{\frac{x+2}{x-1} - 1} = x$$

38. (b) 
$$f(x) = \frac{9^x}{9^3 + 3}$$
,  $f(1-x) = \frac{9^{1-x}}{9^{1-x} + 3}$ 

$$f(1-x) + f(x) = \frac{9^{1-x}}{9^{1-x} + 3} + \frac{9^x}{9^3 + 3} = \frac{9}{9 + 3 \cdot 9^x} + \frac{9^x}{9^x + 3} = \frac{3}{3 + 9^x} + \frac{9^x}{9^x + 3} = 1$$

$$\therefore f\left(\frac{1}{97}\right) + \dots \cdot f\left(\frac{96}{97}\right) = 48.$$

39. (b) Since 
$$A \times B \rightarrow B \times A$$

$$f$$
 is one-one

f is onto therefore, f(x) is bijective function

**40.** (c) 
$$aob = a$$

boa = b therefore, aob and boa are not commutative.

43. (d) As given that given triangles are similar

$$\frac{3}{6} = \frac{4}{8}, \frac{5}{10} = \frac{1}{2}$$

 $\therefore$  The corresponding sides of  $T_1$  and  $T_3$  are in the same ratio,  $T_3$  is related to  $T_1$ .

#### 44. (b) The given relation is equivalence

.. The elements in A related to right triangle with sides 3, 4 and 5. These are polygons with 3-sides. Hence, the set of all elements in A related to triangle T is the set of all triangles.

**45.** (d) 
$$f: Z \to Z$$
 is given by

$$f(x) = x^3 \Rightarrow f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$$

$$\therefore$$
 f is injective,

Now,  $2 \in Z$ , But these does not exist any element x in domain Z.

$$f(x) = x^3 = 2$$
 Therefore, f is not surjective.

**46.** (d) 
$$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$$

$$f(1) = f(2) = 1$$
 but  $1 \neq 2$ 

$$\therefore$$
 f is not one-one and f is not onto

As there does not exist any x in domain R such that f(x) = -2.

**47.** (d) 
$$f: R \to R \to f(x) = x^{10}$$

Let 
$$x, y \in \mathbb{R}$$
 such that  $f(x) = f(y)$ 

$$x^{10} = y^{10}$$

$$x = \pm y \Rightarrow f(x_1) = f(x_2)$$

does not multiply that 
$$x_1 = x_2$$

$$\therefore$$
 f is not one-one and  $f(x)$  is not onto

**48.** (d) L.C.M. of 
$$a$$
 and  $1 = a$ 

$$a * 1 = a = 1 * a a \in N$$

$$\therefore$$
  $(a, a) \in \mathbb{R} \ \forall \ a \in \mathbb{A}$ 

The no. of ordered pair in R is n.



**51.** (i) (c) When fog is an identity function, then, 
$$g = f^{-1}$$

(ii) (a) 
$$(f \circ g)(x) = f(g(x)) = 2(g(x)) + 3 = 2(-x^2 + 1) + 3 = -2x^2 + 5$$

(iii) (a) 
$$(f \circ g)(x) = g(f(x)) = \text{In}(1 - f(x)^2)$$

In 
$$\left(1-\left(\sqrt{x+2}\right)^2\right) = \text{In}(1-(x+2)) = \text{In}(-1-x)$$

$$1 - f(x)^2 > 0$$
;  $-x - 1 > 0$ 

$$x < -1$$
 or in the interval  $(-\infty, -1)$ .

(iv) (c) 
$$gof = \{(-2, 1), (0, 3)\}; Range = \{1, 3\}$$

(v) (a) 
$$F(x) = In (In(x) \Rightarrow F(x) = In (u(x))$$

Chain rule, 
$$F'(x) = \left[ \frac{d}{du} (\ln u) \right] \frac{du}{dx} = \frac{1}{u} \times \frac{1}{x} = \frac{1}{x} \cdot \frac{1}{\ln x}$$