Chapter - 11 THREE-DIMENSIONAL GEOMETRY

STUDY NOTES

• Distance between two points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$

Contact : 9811779746, 9811779744, 011-47510177

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

• Direction cosines of a line: If α , β , γ are the direction angles of a line, then $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are called the direction cosines of the line. Usually direction cosines are denoted by l, m, n, i.e., $l = \cos \alpha$, $m = \cos \beta$, $n = \cos \gamma$.

Also, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$, i.e., $l^2 + m^2 + n^2 = 1$.

$$l = \cos\alpha = \frac{a}{\sqrt{a^2 + b^2 + c^2}}, m = \cos\beta = \frac{b}{\sqrt{a^2 + b^2 + c^2}}, n = \cos\gamma = \frac{c}{\sqrt{a^2 + b^2 + c^2}}.$$

- Shortest distance between two lines $\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $\overrightarrow{r} = \overrightarrow{a_2} + \lambda \overrightarrow{b_2}$ be two non-intesecting, non parallel lines is $(\overrightarrow{a}_2 - \overrightarrow{a}_1) \cdot (\overrightarrow{b}_1 \times \overrightarrow{b}_2)$ $(\overrightarrow{b}_1 \times \overrightarrow{b}_2)$
- Let a plane passes through a point A with position vector \overrightarrow{a} , and be perpendicular to a direction along the vector \overrightarrow{n} , then vector equation of plane is $(\overrightarrow{r} - \overrightarrow{a}) \cdot \overrightarrow{n} = 0$.
- Equation of plane passing through three non collinear points $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$ is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

• Cartesian form of equation of plane passing through a point (x_1, y_1, z_1) and parallel to lines with direction ratios $\langle a_1, b_1, c_1 \rangle$ and $\langle a_2, b_2, c_2 \rangle$ is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

- Distance from a point $P(x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is given by $\frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}}$
- Equation of a plane passing through a point whose position vector is \vec{a} and perpendicular to the plane $\vec{r} \cdot \vec{n}_1 = d_1$ and $\overrightarrow{r} \cdot \overrightarrow{n}_2 = d_2$ is given by $(\overrightarrow{r} - \overrightarrow{a}) \cdot (\overrightarrow{n}_1 \times \overrightarrow{n}_2) = 0$.
- Equation of a plane passing through two points P and Q, and perpendicular to the plane $\overrightarrow{r} \cdot \overrightarrow{n}_1 = d_1$ is given by $(\overrightarrow{r}-\overrightarrow{a})\cdot(\overrightarrow{n}_1\times(\overrightarrow{b}-\overrightarrow{a})\overrightarrow{n}_2)=0$, where \overrightarrow{a} and \overrightarrow{b} are position vectors of points P and Q respectively.

1. Distance between two planes : 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12 is :

(b) 4 units

(b) $2\sqrt{30}$

(a) 2 units

(a) $\sqrt{30}$

(d) $\frac{2}{\sqrt{29}}$ units

QUESTION BANK

MULTIPLE CHOICE QUESTIONS

2. Equation of plane parallel to plane x - 2y + 2z - 5 = 0 and at a unit distance from the origin is:

(c) 8 units

	(a) $x - 2y + 2z - 3 = 0$	(b) $x - 2y + 2z + 1 = 0$	(c) $x - 2y + 2z - 1 = 0$	(d) $x - 2y + 2z + 5 = 0$
3.	Unit normal vector to plane	2x - 2y - z - 5 = 0 is:		
	(a) $2\hat{i} - 2\hat{j} - \hat{k}$	(b) $\pm \frac{1}{3}(2\hat{i} - 2\hat{j} - \hat{k})$	(c) $\frac{1}{3}(2\hat{i} - 2\hat{j} - \hat{k})$	(d) $-\frac{1}{3}(2\hat{i}-2\hat{j}-\hat{k})$
4.	The distance between two p	parallel planes: $2x + y + 2z$	= 8 and 4x + 2y + 4z + 5 =	= 0 is:
	(a) $\frac{5}{2}$ units	(b) $\frac{7}{2}$ units	(c) $\frac{9}{2}$ units	(d) $\frac{3}{2}$ units
5.	The distance of plane $\overrightarrow{r} \cdot \left(\overrightarrow{r} \right)$	$\frac{-2}{7}\hat{i} - \frac{3}{7}\hat{j} + \frac{6}{7}\hat{k} = 1$ from the	origin is:	$I = \cos \alpha, m = \cos \beta, n = \cos \beta, n = \cos \beta, n = \cos \beta$ Also, $\cos^2 \alpha, \cos^2 \beta + c$
	(a) 1 unit	(b) 7 units	(c) $\frac{1}{7}$ units	(d) 3 units
6.	The distance of plane $2x -$	3y + 6z + 7 = 0 from point	(2, -3, -1) is:	Va2 + 62 + c
	(a) 4 units	(b) 3 units	(c) 1 unit	(d) $\frac{1}{5}$ units
7.	The planes : $2x - y + 4z =$	5 and 5x - 2.5y + 10z = 6	are	
	(a) perpendicular		(b) parallel	5) (68 8 (8)
	(c) intersect y-axis	call or og a bas or often	(d) passes through $(0, 0, 0)$	$\left(\frac{3}{4}\right)$ di assent pusiq a in $\left(\frac{3}{4}\right)$
8.	If α , β , γ be the angles wh $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$	ich a line makes with the po	ositive direction of co-ordina	San Sharana Barbara I was al-
	(a) 2	(b) 1	(c) 3	(d) 0
9.	The angle between the line	$5 \ 2x = 3y = -z \text{ and } 6x - y = -z$	= -4z is:	
	(a) 90°	(b) 0°	(c) 30°	(d) 45°
10.	P is a point on the line seg co-ordinate is:	ment joining the points (3, 2	(2, -1) and $(6, 2, -2)$. If x co	-ordinate of P is 5, then its y
	(a) 2	(b) 1	(c) -1	(d) -2
11.	The distance of a point P(a	(a, b, c) from x-axis is:		
			(c) $\sqrt{b^2 + c^2}$	(d) $b^2 + c^2$
12.		f lines $\frac{x-4}{5} = \frac{y-1}{2} = \frac{z}{1}$ and		
			(c) $(1, -1, -1)$	(d) $(-1, 1, -1)$
		es $\frac{x}{2} = \frac{y}{2} = \frac{z}{-1}$ and $\frac{x-1}{1} = \frac{y}{1}$		
	(a) $\cos^{-1}\left(\frac{4}{9}\right)$	(b) $\cos^{-1}\left(\frac{1}{3}\right)$	(c) $\cos^{-1}\left(\frac{2}{9}\right)$	(d) $\cos^{-1}\left(\frac{5}{9}\right)$
14.	The shortest distance between	een the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{2}{3}$	$\frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$	is:

(c) $5\sqrt{30}$

(d) $3\sqrt{30}$

Contact: 9811779746, 9811779744, 011-47510177

Excellence is our passion...

15. The image of the point (-1, 3, 4) in the plane x - 2y = 0 is :

(a)
$$\left(-\frac{17}{3}, \frac{-19}{3}, 4\right)$$

(c)
$$\left(\frac{-17}{3}, \frac{-19}{3}, 1\right)$$
 (d) $\left(\frac{9}{5}, \frac{-13}{5}, 4\right)$

(d)
$$\left(\frac{9}{5}, \frac{-13}{5}, 4\right)$$

16. The angle between the lines whose direction cosines satisfy the relations, l + m + n = 0 and 3 lm - 5mn + 2nl = 0 is:

(a)
$$\frac{\pi}{4}$$

(b)
$$\frac{\pi}{2}$$

(c)
$$\frac{\pi}{3}$$

(d)
$$\cos^{-1}\left(\frac{3}{\sqrt{16}}\right)$$

17. The foot of the perpendicular drawn from the point (1, 0, 2) on the line $\frac{x+1}{3} = \frac{y-1}{-2} = \frac{z+1}{-1}$ is :

(a)
$$\left(\frac{1}{2}, 1, \frac{-3}{2}\right)$$

(b)
$$\left(\frac{2}{3}, 1, -1\right)$$

(a)
$$\left(\frac{1}{2}, 1, \frac{-3}{2}\right)$$
 (b) $\left(\frac{2}{3}, 1, -1\right)$ (c) $\left(\frac{2}{3}, \frac{-1}{2}, -2\right)$

(d)
$$(1, -2, -1)$$

18. If O is the origin and OP = 3 with direction ratios -1, 2, -2, then co-ordinates of P are

(b)
$$(-1, 2, -2)$$

(c)
$$(-3, 6, -9)$$

(d)
$$\left(\frac{-1}{3}, \frac{2}{3}, \frac{-2}{3}\right)$$

19. The equation of the plane through the intersection of the planes x + y + z = 1 and 2x + 3y - z + 4 = 0, parallel to x-axis is:

(a)
$$y - 3z + 6 = 0$$

(b)
$$3y - z + 6 = 0$$

(c)
$$y + 3z + 6 = 0$$

(b)
$$3y - z + 6 = 0$$
 (c) $y + 3z + 6 = 0$ (d) $3y - 2z + 6 = 0$

20. A plane passes through (1, -2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point, (1, 2, 2) is:

(c)
$$\sqrt{2}$$

(d)
$$2\sqrt{2}$$

21. The equation of a plane which passes through (2, -3, 1) and is normal to the line joining the points (3, 4, -1)and (2, -1, 5) is given by

(a)
$$x + 5y - 6z + 19 = 0$$

(b)
$$x - 5y + 6z - 19 = 0$$

(c)
$$x + 5y + 6z + 19 = 0$$

(d)
$$x - 5y - 6z - 19 = 0$$

22. The angle between two planes 2x - y + z = 6 and x + 2y + 3z = 3 is :

(a)
$$\cos^{-1}\left(\frac{1}{2}\sqrt{\frac{1}{7}}\right)$$

(b)
$$\cos^{-1}\left(\frac{1}{2}\sqrt{\frac{2}{7}}\right)$$
 (c) $\cos^{-1}\left(\frac{1}{2}\sqrt{\frac{3}{7}}\right)$ (d) $\cos^{-1}\left(\frac{1}{2}\sqrt{\frac{4}{7}}\right)$

(c)
$$\cos^{-1}\left(\frac{1}{2}\sqrt{\frac{3}{7}}\right)$$

(d)
$$\cos^{-1}\left(\frac{1}{2}\sqrt{\frac{4}{7}}\right)$$

23. The plane through two points A(-1, 1, 1) and B(1, -1, 1) and perpendicular to the plane x + 2y + 2z = 5 has equation:

(a)
$$2x + 2y + 3z = 0$$

(b)
$$2x + 2y + 3z + 3 = 0$$

(c)
$$2(x + y) = 3(z - 1)$$

(d)
$$3x + 3y + 3z - 1 = 0$$

24. The equation of the plane through (2, 3, 4) and parallel to the plane x + 2y + 4z = 5 is :

(a)
$$x + 2y + 4z = 10$$
 (b) $x + 2y + 4z = 3$

(b)
$$x + 2y + 4z = 3$$

(c)
$$x + y + 2z = 2$$

(d)
$$x + 2y + 4z = 24$$

25. The planes x = cy + bz, y = az + cx, z = bx + ay pass through one line, if

(a)
$$a + b + c = 0$$

(b)
$$a + b + c = 1$$

(c)
$$a^2 + b^2 + c^2 = 1$$

(d)
$$a^2 + b^2 + c^2 + 2abc = 1$$

26. The length of the perpendicular from the origin to the plane 3x + 4y + 12z = 52 is :

(b)
$$-4$$

27. The intercepts of the plane 5x - 3y + 6z = 60 on the co-ordinate axes are :

(a)
$$(10, 20, -10)$$
 (b) $(10, -20, 12)$ (c) $(12, -20, 10)$ (d) $(12, 20, -10)$

28. If the planes x + 2y + kz = 0 and 2x + y - 2z = 0 are at right angles, then the value of k is :

(a)
$$\frac{-1}{2}$$

(b)
$$\frac{1}{2}$$

(c)
$$-2$$

(c) $|\beta| + |\gamma|$

(c) $(-\alpha, -\beta, \gamma)$

Contact : 9811779746, 9811779744, 011-47510177

(b) | | B |

(b) $(0, 0, \gamma)$

29. Distance of the point (α, β, γ) from y-axis is :

30. The reflection of the point (α, β, γ) in the xy-plane is :

(a) β

(a) $(\alpha, \beta, 0)$

-Excellence is our passion...

(d) $\sqrt{\alpha^2 + \gamma^2}$

(d) $(\alpha, \beta, -\gamma)$

31.	The plane $2x - 3y + 6z - 11$	$l = 0$ makes an angle $\sin^{-1} c$	x with x -axis. The value of	α is equal to :
	(a) $\frac{\sqrt{3}}{2}$	(b) $\frac{\sqrt{2}}{3}$	(c) $\frac{2}{7}$	(d) $\frac{3}{7}$
32.	The area of quadrilateral AB (a) 9 sq. units	BCD, where A(0, 4, 1) B(2, (b) 18 sq. units	3, -1), C(4, 5, 0) and D(2, (c) 27 sq. units	6, 2) is equal to: (d) 81 sq. units
33.	The ratio in which the join	of (2, 1, 5) and (3, 4, 3) is	divided by the plane $(x + y)$	$-z) = \frac{1}{2}$ is:
	(a) 3:5	(b) 5:7	(c) 1:3	(d) 4:5
34.	The angle between the two	planes $2x + y - 2z = 5$ and	3x - 6y - 2z = 7 is:	
	(a) $\cos^{-1}\left(\frac{4}{21}\right)$	(b) $\cos^{-1}\left(\frac{2}{21}\right)$	(c) $\cos^{-1}\left(\frac{1}{21}\right)$	(d) $\cos^{-1}\left(\frac{5}{21}\right)$
35.	The foot of the perpendicula	ar from the point (7, 14, 15)) to the plane $2x + 4y - z =$	2 are :
	(a) (1, 2, 8)	(b) (3, 2, 8)	(c) (5, 10, 6)	(d) (9, 18, 4)
36.	The locus represented by xy	+yz=0 is:		
	(a) A pair of perpendicular	with the state of	(b) A pair of parallel lines	
	(c) A pair of parallel plane		(d) A pair of perpendicula	
37.	The sine of the angle between	en the straight line $\frac{x-2}{3} = \frac{1}{3}$	$\frac{\sqrt{-3}}{4} = \frac{2-4}{5}$ and the plane 23	x - 2y + z = 5 is :
	(a) $\frac{10}{6\sqrt{5}}$	(b) $\frac{4}{5\sqrt{2}}$	(c) $\frac{2\sqrt{3}}{5}$	(d) $\frac{\sqrt{2}}{10}$
38.	If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{2}$	$\frac{-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ into	ersect, then the value of k is	3: [1]
	(a) $\frac{3}{2}$	(b) $\frac{9}{2}$	(c) $\frac{-2}{9}$	(d) $\frac{-3}{2}$
39.	Two lines $L_1: x = 5, \frac{y}{3-\alpha}$	$=\frac{z}{-2}$, $L_2: x = \alpha$, $\frac{y}{-1} = \frac{z}{2-\alpha}$	$\frac{1}{\alpha}$ are coplanar. Then, α can	take value(s):
	(a) 1, 4, 5	(b) 1, 2, 5	(c) 3, 4, 5	(d) 2, 4, 5
40.	The perpendicular distance	of P(1, 2, 3) from the line	$\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$ is:	
	(a) 7	(b) 5	(c) 0	(d) 6
41.	If the line through the poin $C(2 + 2k, k, 1)$, then what is		2) is perpendicular to the l	ine through the points B and
	(a) -1	(b) 1	(c) -3	(d) 3
42.	A line makes the same ang such that $\sin^2\beta = 3\sin^2\theta$, the	en $\cos^2\theta$ equals :	\$ - 1(f)	
	(a) $\frac{2}{5}$	(b) $\frac{1}{5}$	(c) $\frac{3}{5}$	(d) $\frac{2}{3}$
43.	The coordinates of the point are:	nt where the line through th	ne points A(3, 4, 1) and B(5	5, 1, 6) crosses the XY-plane
	(13 23)	(13 23)	(13 - 23)	(13 -23)

NFINITY INSTI

Excellence is our passion...

Contact: 9811779746	, 9811779744,	011-47510177

44.	Gives the line L: $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-3}{-1}$ and the plane $\pi: x-2y-z=0$, of the following assertions, the only one
	nat is always true is :

(a) L is
$$\perp$$
 to π

(b) L lies in
$$\pi$$

(c) L is not parallel to
$$\pi$$

45. The angle between the line
$$\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$$
 and the plane $10x + 2y - 11z = 3$ is :

(a)
$$\sin^{-1}\left(\frac{8}{21}\right)$$

(b)
$$\sin^{-1}\left(\frac{5}{21}\right)$$
 (c) $\sin^{-1}\left(\frac{7}{21}\right)$ (d) $\sin^{-1}\left(\frac{1}{21}\right)$

(c)
$$\sin^{-1}\left(\frac{7}{21}\right)$$

(d)
$$\sin^{-1}\left(\frac{1}{21}\right)$$

46. What is the value of n so that the angle between the lines having direction ratios (1, 1, 1) and (1, -1, n) is 60° ?

(a)
$$\sqrt{3}$$

(b)
$$\sqrt{6}$$

47. The equation of the right bisector plane of the segment joining (2, 3, 4) and (6, 7, 8) is :

(a)
$$x + y + z + 15 = 0$$

(b)
$$x + y + z - 15 = 0$$

(a)
$$x + y + z + 15 = 0$$
 (b) $x + y + z - 15 = 0$ (c) $x - y + z - 15 = 0$ (d) None of these

48. The coordinates of the point where the line joining the points (2, -3, 1) and (3, -4, -5) cuts the plane 2x + y + z = 7 is:

(a)
$$(1, 2, -7)$$

(b)
$$(1, -2, 7)$$

(c)
$$(-1, -2, 7)$$

49. The equation of line of intersection of planes 4x + 4y - 5z = 12, 8x + 12y - 13z = 32 can be written as :

(a)
$$\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z}{4}$$
 (b) $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z}{4}$ (c) $\frac{x}{2} = \frac{y+1}{3} = \frac{z-2}{4}$ (d) $\frac{x}{2} = \frac{y}{3} = \frac{z-2}{4}$

(b)
$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z}{4}$$

(c)
$$\frac{x}{2} = \frac{y+1}{3} = \frac{z-2}{4}$$

(d)
$$\frac{x}{2} = \frac{y}{3} = \frac{z-2}{4}$$

50. If the line $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies in the plane 2x - 4y + z = 7, then the value of k is :

$$(b) - 7$$

(a) 4 (b) -7 (c) 7 51. What is the angle between the lines $\frac{x-2}{1} = \frac{y+1}{-2} = \frac{z+2}{1}$ and $\frac{x-1}{1} = \frac{2y+3}{3} = \frac{z+5}{2}$?

(a)
$$\frac{\pi}{2}$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{6}$$

52. The point of intersection of the lines $\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7}$ and $\frac{x-2}{1} = \frac{y-4}{2} = \frac{z-6}{5}$ is :

(a)
$$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

(a)
$$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$
 (b) $\left(\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}\right)$ (c) $\left(\frac{1}{3}, -\frac{1}{3}, -\frac{2}{3}\right)$ (d) None of these

(c)
$$\left(\frac{1}{3}, -\frac{1}{3}, -\frac{2}{3}\right)$$

53. The line, $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-1}{-1}$ intersects the curve $xy = c^2$, z = 0 if c is equal to :

(b)
$$\pm \frac{1}{3}$$

(c)
$$\pm \sqrt{5}$$

54. The direction cosines of the line joining the points A(6, -7, -1) and B(2, -3, 1) is :

(a)
$$\left[\pm \frac{2}{3}, \pm \frac{2}{3}, \pm \frac{1}{3}\right]$$

(b)
$$\left[\pm \frac{2}{3}, \pm \frac{1}{3}, \pm \frac{1}{3}\right]$$

(a)
$$\left[\pm\frac{2}{3}, \pm\frac{2}{3}, \pm\frac{1}{3}\right]$$
 (b) $\left[\pm\frac{2}{3}, \pm\frac{1}{3}, \pm\frac{1}{3}\right]$ (c) $\left[\pm\frac{1}{3}, \pm\frac{2}{3}, \pm\frac{2}{3}\right]$ (d) $\left[\pm\frac{1}{3}, \pm\frac{1}{3}, \pm\frac{2}{3}\right]$

(d)
$$\left[\pm \frac{1}{3}, \pm \frac{1}{3}, \pm \frac{2}{3}\right]$$

55. A line segment has length 63 and direction rations are 3, -2, 6. If the line makes an obtuse angle with x-axis, the components of the line vector are:

56. The coordinates of the point where the line segment joining A(5, 1, 6) and B(3, 4, 1) crosses the yz plane are:

(a)
$$\left(0, -\frac{17}{2}, -\frac{17}{2}\right)$$
 (b) $\left(0, \frac{17}{2}, -\frac{13}{2}\right)$ (c) $\left(0, \frac{13}{2}, \frac{-17}{2}\right)$ (d) $\left(0, \frac{-13}{2}, \frac{-17}{2}\right)$

(b)
$$\left(0, \frac{17}{2}, -\frac{13}{2}\right)$$

(c)
$$\left(0, \frac{13}{2}, \frac{-17}{2}\right)$$

(d)
$$\left(0, \frac{-13}{2}, \frac{-17}{2}\right)$$

(a) 1

(a) $\frac{10}{7}$

(a)

(a) 5

(a)

are proportional to 6, 2, 3 is:

that $\sin^2 \beta = 3 \sin^2 \theta$, then $\cos^2 \theta$ equals:

INFINITY INSTITUTE

(c) 2

(c) $\frac{18}{7}$

(c) 7

57. If a line makes angle α , β and γ with the coordinate axes respectively then $\cos 2\alpha + \cos 2\beta + \cos 2\gamma =$

59. The angle between the lines whose direction ratios are proportional to 1, 1, 2 and $\sqrt{3}-1, -\sqrt{3}-1, 4$ is :

58. The projection of the line segment joining the points A(-1, 0, 3) and B(2, 5, 1) on the line whose direction ratios

60. The projection of a line segment on the coordinate axes are 2, 3 and 6. Then, the length of the line segment is:

61. A line makes the same angle θ , with each of the x and z-axes. If the angle β , which it makes with y-axis is such

Contact : 9811779746, 9811779744, 011-47510177

(b) -1

(b) 6

Excellence is our passion...

(d) -2

respectively. If AB makes an acute angle θ with the positive z-axis, then θ equals:				
(a) 60°	(b) 75°	(c) 45°	(d) 30°	
If the planes $\overrightarrow{r} \cdot (2\hat{i} - \hat{j})$	$+2\hat{k}$) = 4 and $\overrightarrow{r} \cdot (3\hat{i} + 2\hat{j})$	$(\hat{t} + \lambda \hat{k}) = 3$ are perpendicular	r, then $\lambda =$	
(a) 2			(d) -3	
(a) $aa' + cc' = -1$	(b) $aa' + cc' = 1$	(c) aa' + bb' = cc'	(d) ab + cd = a'b' + c'd'	
. The angle between the l	lines $2x = 3y = -z$ and $6x = -z$	= -y = -4z, is:	To What is the same between	
(a) 0°	(-)	(c) 45°	(d) 90°	
. The line of intersection	of the planes $\vec{r} \cdot (3\hat{i} - \hat{j} +$	\hat{k}) = 1 and $\vec{r} \cdot (\hat{i} + 4\hat{j} - 2\hat{k})$) = 2 is parallel to the vector.	
(a) $2\hat{i} + 7\hat{j} + 13\hat{k}$	(b) $-2\hat{i} - 7\hat{j} + 13\hat{k}$	(c) $2\hat{i} + 7\hat{j} + 13\hat{k}$	(d) $-2\hat{i} + 7\hat{j} + 13\hat{k}$	
	INPUT TEXT	BASED MCQ's	and the second of the second o	
. Consider the lines	(9)			
Line (l_1) : $\frac{x+1}{3} = \frac{y+2}{1}$	$= \frac{z+1}{2} \text{ and line } (l_2) : \frac{x-2}{1}$	$=\frac{y+2}{2}=\frac{z-3}{3}.$		
wer the following questio	ns:			
) The shortest distance be	etween line (l_1) and line (l_2)) is :		
() (17	17	41	
(a) U	(b) //	(c) $\frac{1}{}$	(d) $\frac{41}{-\sqrt{5}}$	
(a) 0	(b) $\frac{17}{\sqrt{3}}$	(c) $\frac{17}{5\sqrt{3}}$	(d) $\frac{41}{5\sqrt{3}}$	
) Unit vector perpendicula	ar to both line (l_1) and line	$e(l_2)$ is:		
) Unit vector perpendicula	ar to both line (l_1) and line	343		
Unit vector perpendicular (a) $\frac{7\hat{i} - 7\hat{j} - \hat{k}}{\sqrt{99}}$	ar to both line (l_1) and line $(b) \frac{-\hat{i}+7\hat{j}+5\hat{k}}{5\sqrt{3}}$	(c) $\frac{-\hat{i}+7\hat{j}+7\hat{k}}{\sqrt{99}}$	(d) $\frac{-\hat{i}-7\hat{j}+5\hat{k}}{5\sqrt{3}}$	
Unit vector perpendicular (a) $\frac{7\hat{i} - 7\hat{j} - \hat{k}}{\sqrt{99}}$	ar to both line (l_1) and line $(b) \frac{-\hat{i}+7\hat{j}+5\hat{k}}{5\sqrt{3}}$ at $(1, 1, 1)$ from the plane p	(c) $\frac{-\hat{i}+7\hat{j}+7\hat{k}}{\sqrt{99}}$		
Unit vector perpendicular (a) $\frac{7\hat{i}-7\hat{j}-\hat{k}}{\sqrt{99}}$ The distance of the point	ar to both line (l_1) and line $(b) \frac{-\hat{i}+7\hat{j}+5\hat{k}}{5\sqrt{3}}$ at $(1, 1, 1)$ from the plane p	(c) $\frac{-\hat{i}+7\hat{j}+7\hat{k}}{\sqrt{99}}$	(d) $\frac{-\hat{i}-7\hat{j}+5\hat{k}}{5\sqrt{3}}$	
	respectively. If AB makes (a) 60° If the planes $\overrightarrow{r} \cdot (2 \hat{i} - \hat{j})$ (a) 2 If the lines $x = ay + b$, (a) $aa' + cc' = -1$ The angle between the lag of the line of intersection (a) $2 \hat{i} + 7 \hat{j} + 13 \hat{k}$ Consider the lines Line $(l_1) : \frac{x+1}{3} = \frac{y+2}{1}$ wer the following question. The shortest distance between the lagrange of the shortest distance between the lines.	respectively. If AB makes an acute angle θ with the (a) 60° (b) 75° If the planes $\overrightarrow{r} \cdot (2\hat{i} - \hat{j} + 2\hat{k}) = 4$ and $\overrightarrow{r} \cdot (3\hat{i} + 2\hat{j})$ (a) 2 (b) -2 If the lines $x = ay + b$, $z = cy + d$ and $x = a'y + k$ (a) $aa' + cc' = -1$ (b) $aa' + cc' = 1$ The angle between the lines $2x = 3y = -z$ and $6x = 0$ (a) 0° (b) 30° The line of intersection of the planes $\overrightarrow{r} \cdot (3\hat{i} - \hat{j} + 13\hat{k})$ INPUT TEXT Consider the lines Line $(l_1): \frac{x+1}{3} = \frac{y+2}{1} = \frac{z+1}{2}$ and line $(l_2): \frac{x-2}{1}$ wer the following questions: The shortest distance between line (l_1) and line (l_2)	respectively. If AB makes an acute angle θ with the positive z-axis, then θ equivariance θ (a) θ (b) θ (c) θ (c) θ (c) θ (d) θ (e) θ (figure θ (e) θ (figure θ))) (figure θ (figure θ (figure θ))) (figure θ (figure θ)) (figure θ) (figure	

IFINITY INSTITUI

Contact: 9811779746, 9811779744, 011-47510177

Excellence is our passion...

(iv) If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then the value of k is:

(a)
$$\frac{3}{2}$$

(b)
$$\frac{9}{2}$$

(c)
$$\frac{-2}{9}$$

(d)
$$\frac{-3}{2}$$

(v) The equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$

Which is perpendicular to the plane containing the lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is:

(a)
$$x + 2y - 2z = 0$$

(b)
$$3x + 2y - 2z = 0$$
 (c) $x - 2y + z = 0$

(c)
$$x - 2y + z = 0$$

(d)
$$5x + 2y - 4z = 0$$

68. Two cars are running along the lines P and Q at a speed more than the permissible speed on the road, i.e., $\vec{r} = \lambda(\hat{i} - \hat{j} + 2\hat{k})$ and $\vec{r} = 3\hat{i} + 3\hat{j} + \mu(2\hat{i} + \hat{j} + \hat{k})$ respectively.

Answer the following questions:

(i) The cartesian equation of the line along which car P is running is:

(a)
$$\frac{x}{2} = \frac{y}{-1} = \frac{z}{1}$$

(b)
$$\frac{x}{1} = \frac{y}{-1} = \frac{z}{2}$$
 (c) $\frac{x}{-1} = \frac{y}{2} = \frac{z}{1}$

(c)
$$\frac{x}{-1} = \frac{y}{2} = \frac{z}{1}$$

(d)
$$\frac{x}{-1} = \frac{y}{1} = \frac{z}{2}$$

(ii) The direction cosines of line along which car P is running are

(a)
$$<\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}>$$

(b)
$$<\frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}>$$

(a)
$$<\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}>$$
 (b) $<\frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}>$ (c) $<\frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{2}{\sqrt{6}}>$

(d)
$$<-1, \frac{-1}{\sqrt{6}}, \frac{2}{\sqrt{6}}>$$

(iii) The direction ratios of the line along which car Q is running, are

(c)
$$<2, -1, 1>$$

(d)
$$<1, 2, -1>$$

(iv) The shortest distance between the given lines is:

(b)
$$\sqrt{3}$$
 units

(c)
$$2\sqrt{2}$$
 units

(v) The cars will meet with an accident at the point

(b)
$$(1, -1, 2)$$

(c)
$$(-1, -1, 2)$$

ANSWERS

- 1. (d) **2.** (a)
- **3.** (b)
- 4. (b)
- 6. (c)
- 7. (b)
- 8. (a)

38. (b)

58. (b)

9. (a) 10. (a)

- 11. (c) **12.** (a)
- 13. (a)
- 5. (a) 14. (d) 15. (d)
- **16.** (b)
- 17. (a)
- 18. (b)

59. (a)

- 21. (a) **22.** (c)
- 23. (c) 24. (d)

- 19. (a) 20. (d)

- 31. (c) 32. (a)
- 33. (b) 34. (a)
- **26.** (d) **25.** (a) 35. (a) 36. (d)
- 27. (c) 37. (d)

57. (b)

- 28. (d)
 - 29. (d) 30. (d) 39. (a) **40.** (a)

- 41. (d) 42. (c)
- **43.** (a)
- **44.** (b) **45.** (a)
- **46.** (b)
- 47. (b) **48.** (b)
- **49.** (b) **50.** (c)

60. (c)

61. (c) **62.** (a)

52. (b)

(ii) (c)

51. (a)

68. (i) (b)

- 53. (c) **63.** (b)
- **64.** (a)

54. (a)

56. (b) **55.** (c) 65. (d) 66. (d)

- **67.** (i) (c) (ii) (d)
- (iii) (c) (iii) (b)
- (iv) (b) (iv) (a)
- (v) (c) (v) (b)

Hints to Some Selected Questions

1. (d) Distance between two parallel planes

$$Ax + By + Cz = d_1$$
 and $Ax + By + Cz = d_2$ is

$$\frac{d_1 - d_2}{\sqrt{A^2 + B^2 + C^2}}$$

:. Distance =
$$\left| \frac{4-6}{\sqrt{2^2 + 3^2 + 4^2}} \right| = \frac{2}{\sqrt{29}}$$
 units

Contact: 9811779746, 9811779744, 011-47510177

Excellence is our passion...

2. (a) Plane parallel to x - 2y + 2z - 5 = 0 is x - 2y + 2z + k = 0Distance from origin = 1

$$\Rightarrow \frac{k}{\sqrt{9}} = 1 \Rightarrow k = \pm 3$$

$$\therefore x - 2y + 2z - 3 = 0.$$

3. (b) Direction ratios of normal vector are (2, -2, -1)

Unit normal vector is $\frac{2\hat{i} - 2\hat{j} - \hat{k}}{+2} = \pm \frac{1}{2}(2\hat{i} - 2\hat{j} - \hat{k})$

- 4. (b) Distance = $\frac{\left|8 + \frac{5}{2}\right|}{\sqrt{4 + 1 + 4}} = \frac{7}{2}$ units
- 5. (a) Required distance = $\frac{\left| (0\hat{i} + 0\hat{j} + 0\hat{k}) \cdot \left(-\frac{2}{7}\hat{i} \frac{3}{7}\hat{j} + \frac{6}{7}\hat{k} \right) 1 \right|}{\sqrt{\left(\frac{4}{49} + \frac{9}{49} + \frac{36}{49} \right)}} = 1 \text{ unit}$
- 6. (c) Distance = $\frac{(2 \times 2 + (-3)(-3) + 6 \times -1)}{\sqrt{4 + 9 + 36}} = \frac{7}{7} = 1$
- 7. (b) $\cos \theta = \frac{(2 \times 10) + (-1 \times -5) + (4 \times 20)}{\sqrt{2^2 + (-1)^2 + (4^2)\sqrt{10^2 + (-5)^2 + 20^2}}}$

$$\cos \theta = \left| \frac{20 + 5 + 80}{\sqrt{21}\sqrt{525}} \right| = \left| \frac{105}{\sqrt{21} \times \sqrt{21} \times 5} \right| = 1$$

So, $\cos \theta = 1 \Rightarrow \theta = 0$. Therefore, the planes are parallel.

- 8. (a) Since, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \Rightarrow \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 3 1 = 2$.
- 10. (a) Let P divides the line segment in the ratio of λ : 1, x-coordinate of the point P may be expressed as $x = \frac{6\lambda + 3}{\lambda + 1}$ giving $\frac{6\lambda + 3}{\lambda + 1} = 5$ so that $\lambda = 2$. Thus, y-coordinate of P is $\frac{2\lambda + 2}{\lambda + 1} = 2$
- 11. (c) The required distance is the distance of P(a, b, c) from Q(a, 0, 0), which is $\sqrt{b^2+c^2}$.
- 12. (a) Both the lines are satisfied by (-1, -1, -1).
- 14. (d) S.D. = $\frac{\begin{vmatrix} 6 & 15 & -3 \\ 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix}}{\sqrt{(-4-2)^2 + (12+3)^2 + (6-3)^2}} = \frac{270}{\sqrt{270}} = \sqrt{270} = 3\sqrt{30}.$
- 17. (a) Any point on the given line is of the form

 $Q = (-1 + 3\lambda, 2 - 2\lambda, -1 - \lambda)$. Let P = (1, 0, 2). \overrightarrow{PO} is perpendicular to the given line So, $(3\lambda - 2, 2 - 2\lambda, -3 - \lambda)$, (3, -2, -1) = 0

$$\Rightarrow 9\lambda - 6 - 2(2 - 2\lambda) - 1 \ (-3 - \lambda) = 0 \Rightarrow \lambda = \frac{1}{2}$$

Therefore, $Q = \left(\frac{1}{2}, 1, -\frac{3}{2}\right)$ is the foot of the perpendicular from P onto the line.

FINITY INSTITU

Contact: 9811779746, 9811779744, 011-47510177

Excellence is our passion...

18. (b) Co-ordinates of P are (lr, mr, nr)

Here,
$$l = \frac{-1}{\sqrt{1^2 + 2^2 + 2^2}} = \frac{-1}{3}$$
, $m = \frac{2}{3}$, $n = \frac{-2}{3}$

- \therefore co-ordinates of P are (-1, 2, -2).
- 19. (a) The equation of the plane through the intersection of plane x + y + z = 1and 2x + 3y - z + 4 = 0 is

$$(x + y + z - 1) + \lambda (2x + 3y - z + 4) = 0$$

or
$$(1 + 2\lambda) x + (1 + 3\lambda) y + (1 - \lambda)z + 4\lambda - 1 = 0$$

Since the plane parallel to x-axis,

$$\therefore 1 + 2\lambda = 0 \Rightarrow \lambda = \frac{-1}{2}$$

Hence, the required equation will be y - 3z + 6 = 0.

20. (d) The plane is a(x-1) + b(y+2) + c(z-1) = 0

where
$$2a - 2b + c = 0$$
 and $a - b + 2c = 0$

$$\Rightarrow \frac{a}{1} = \frac{b}{1} = \frac{c}{0} = k$$

So, the equation of plane x + y + 1 = 0

- ... Distance from the point $(1, 2, 2) = \frac{1+2+1}{\sqrt{1^2+1^2}} = 2\sqrt{2}$.
- 21. (a) Obviously (x-2) + 5(y+3) 6(z-1) = 0

$$\Rightarrow x + 5y - 6z + 19 = 0$$

22. (c) We have equation of planes are 2x - y + z = 6 and x + 2y + 3z = 3

$$\therefore \cos \theta = \frac{2 + (-2) + 3}{\sqrt{2^2 + (-1)^2 + 1^2} \sqrt{1^2 + 2^2 + 3^2}} = \frac{3}{\sqrt{6} \cdot \sqrt{14}} = \sqrt{\frac{3}{28}}$$

$$\Rightarrow \theta = \cos^{-1} \left(\frac{1}{2} \sqrt{\frac{3}{7}} \right).$$

- 23. (c) Any plane through (-1, 1, 1) is A(x + 1) + B(y 1) + C(z 1) = 0
 - \therefore It passes through (1, -1, 1)

$$\Rightarrow$$
 2A - 2B + 0C = 0

$$\therefore$$
 It is \perp to $x + 2y + 2z = 5$

$$\Rightarrow$$
 A + 2B + 2C = 0

Solving
$$\frac{A}{-4} = \frac{B}{-4} = \frac{C}{6}$$

:. Required plane is -4(x + 1) - 4(y - 1) + 6(z - 1) = 0

$$\Rightarrow 2(x+1) + 2(y-1) - 3(z-1) = 0 \Rightarrow 2(x+y) = 3(z-1).$$

- **24.** (d) The plane will be $x + 2y + 4z = 2 \times 1 + 3 \times 2 + 4 \times 4$ or x + 2y + 4z = 24.
- 25. (d) The planes are concurrent, therefore,

$$\begin{vmatrix} -1 & c & b \\ c & -1 & a \\ b & a & -1 \end{vmatrix} = 0 \implies a^2 + b^2 + c^2 + 2abc = 1.$$
26. (d) Length =
$$\begin{vmatrix} -52 \\ \sqrt{9+16+144} \end{vmatrix} = \begin{vmatrix} -52 \\ 13 \end{vmatrix} = 4.$$

26. (d) Length =
$$\left| \frac{-52}{\sqrt{9+16+144}} \right| = \left| \frac{-52}{13} \right| = 4$$
.

INFINITY INSTITUTE

Contact : 9811779746, 9811779744, 011-47510177

Excellence is our passion...

- 27. (c) $\frac{5x}{60} \frac{3y}{60} + \frac{6z}{60} = 1 \Rightarrow \frac{x}{12} \frac{y}{20} + \frac{z}{10} = 1$. Hence, the intercepts are (12, -20, 10).
- **28.** (d) We have, the planes are x + 2y + kz = 0 and 2x + y 2z = 0Then, $2 \times 1 + 1 \times 2 + k \times -2 = 0 \Rightarrow k = 2$.
- 29. (d) The given point is (α, β, γ) Any point on y-axis = $(0, \beta, 0)$ \therefore Required distance = $\sqrt{(\alpha - 0)^2 + (\beta - \beta)^2 + (\gamma - 0)^2} = \sqrt{\alpha^2 + \gamma^2}$
- **30.** (d) Reflection of point (α, β, γ) in xy-plane is $(\alpha, \beta, -\gamma)$.
- 31. (c) D.R's of the normal to the plane 2x 3y + 6z 11 = 0 are 2, -3, 6. Direction ratios of x-axis are 1, 0, 0 \therefore Angle between plane and line is

$$\sin\theta = \frac{2 \times 1 - 3 \times 0 + 6 \times 0}{\sqrt{2^2 + (-3)^2 + 6^2} \cdot \sqrt{1^2 + 0^2 + 0^2}} = \frac{2}{7} \cdot \frac{2}{3}$$

- 34. (a) $\cos \theta = \left| \frac{(2\hat{i} + \hat{j} 2\hat{k}) \cdot (3\hat{i} 6\hat{j} 2\hat{k})}{\sqrt{4 + 1 + 4}\sqrt{9 + 36 + 4}} \right| = \frac{4}{21}$ Hence, $\theta = \cos^{-1} \left(\frac{4}{21} \right)$.
- 35. (a) Length of the \perp from the point (x_1, y_1, z_1) to the plane ax + by + cz + d = 0 is $\frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$

and the co-ordinate (α, β, γ) of the foot of the \bot are given by $\frac{\alpha - x_1}{a} = \frac{\beta - y_1}{b} = \frac{\gamma - z_1}{c}$

$$= -\left(\frac{ax_1 + by_1 + cz_1 + d}{a^2 + b^2 + c^2}\right) \qquad \dots (i)$$

 $x_1 = 7$, $y_1 = 14$, $z_1 = 5$, a = 2, b = 4, c = -1 and d = -2

By putting these value in (i), we get

$$\frac{\alpha - 7}{2} = \frac{\beta - 14}{4} = \frac{\gamma - 5}{-1} = \frac{-63}{21} \Rightarrow \alpha = 1, \ \beta = 2 \text{ and } \gamma = 8.$$

Hence, foot of \perp is (1, 2, 8).

- **36.** (d) Given $xy + yz = 0 \Rightarrow y \cdot (x + z) = 0 \Rightarrow y = 0$ or x + z = 0 Here, y = 0 is one plane and x + z = 0 is another plane. So, it is a pair of perpendicular planes.
- 37. (d) Given line $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ and plane : 2x 2y + z = 5. D, ratios of the line are 3, 4, 5. and D, ratios of the normal to the plane are (2, -2, 1)

$$\therefore \sin \theta = \frac{3 \times 2 + 4 \times -2 + 5 \times 1}{\sqrt{9 + 16 + 25}\sqrt{4 + 4 + 1}} = \frac{6 - 8 + 5}{\sqrt{50} \times 3} = \frac{\sqrt{2}}{10}.$$

38. (b) Let A = (1, -1, 1), B = (3, k, 0), \overrightarrow{n}_1 = (2, 3, 4) and \overrightarrow{n}_2 = (1, 2, 1). The lines intersect $\Rightarrow \overrightarrow{AB}, \overrightarrow{n}_1, \overrightarrow{n}_2$ are coplanar.

Hence,
$$\begin{vmatrix} 2 & k+1 & -1 \\ 2 & 3 & 4 \\ 1 & 2 & 1 \end{vmatrix} = 0$$

Contact: 9811779746, 9811779744, 011-47510177

40. (a) The point A(6, 7, 7) is on the line.

Let the perpendicular from P meet the line in M.

Then,
$$AP^2 = (6-1)^2 + (7-2)^2 + (7-3)^2 = 66$$

Also, AM = Projection of AP on line

$$\left(\text{D.C.'s} \frac{3}{\sqrt{17}}, \frac{2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}\right)$$

$$\Rightarrow$$
 (6 - 1), $\frac{3}{\sqrt{17}} + (7 - 2) \cdot \frac{2}{\sqrt{17}} + (7 - 3) \cdot \frac{-2}{\sqrt{17}} = \sqrt{17}$

Perpendicular distance = $\sqrt{AP^2 - AM^2} = \sqrt{66 - 17} = \sqrt{49} = 7$.

42. (c) Let l, m and n be the direction cosines.

Then, $l = \cos \theta$, $m = \cos \beta$, $n = \cos \theta$

we have
$$l^2 + m^2 + n^2 = 1$$

$$\Rightarrow \cos^2\theta + \cos^2\beta + \cos^2\theta = 1 \Rightarrow 2\cos^2\theta + 1 - \sin^2\beta = 1$$

$$\Rightarrow 2\cos^2\theta - \sin^2\beta = 0 \Rightarrow 2\cos^2\theta - 3\sin^2\beta = 0 \Rightarrow \tan^2\theta = \frac{2}{3}$$

$$\therefore \cos^2 \theta = \frac{1}{1 + \tan^2 \theta} = \frac{1}{1 + 2/3} = \frac{3}{5}.$$

44. (b) Since 3(1) + 2(-2) + (-1)(-1) = 3 - 4 + 1 = 0

 \therefore Given line is \perp to the normal to the plane, i.e., given line is parallel to the given plane.

Also,
$$(1, -1, 3)$$
 lies on the plane $x - 2y - z = 0$ if $1 - 2(-1) - 3 = 0$, i.e., $1 + 2 - 3 = 0$

which is true \therefore L lies in plane π .

45. (a) Let θ be the angle between the line and the normal to the plane. Converting the given equations into vector form, we have

$$\vec{r} = (-\hat{i} + 3\hat{k}) + \lambda (2\hat{i} + 3\hat{j} + 6\hat{k})$$
 and

$$\overrightarrow{r} \cdot (10\hat{i} + 2\hat{j} - 11\hat{k}) = 3$$

Here,
$$\overrightarrow{b} = 2\hat{i} + 3\hat{j} + 6\hat{k}$$
 and $\overrightarrow{n} = 10\hat{i} + 2\hat{j} - 11\hat{k}$

$$\sin \phi = \left| \frac{(2\hat{i} + 3\hat{j} + 6\hat{k}) \cdot (10\hat{i} + 2\hat{j} - 11\hat{k})}{\sqrt{2^2 + 3^2 + 6^2} \sqrt{10^2 + 2^2 + 11^2}} \right| = \left| \frac{-40}{7 \times 15} \right| = \left| \frac{-8}{21} \right| = \frac{8}{21} \text{ or } \phi = \sin^{-1} \left(\frac{8}{21} \right)$$

46. (b) If (l_1, m_1, n_1) and (l_2, m_2, n_2) are the direction ratios then angle between the lines is

$$\cos \theta = \frac{l_1 l_2 + m_1 m_2 + n_1 n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}}$$

Here,
$$l_1 = 1$$
, $m_1 = 1$, $n_1 = 1$ and

$$l_2 = 1$$
, $m_2 = -1$, $n_2 = n$ and $\theta = 60^\circ$.

$$\therefore \cos 60^{\circ} = \frac{1 \times 1 + 1 \times (-1) + 1 \times n}{\sqrt{1^2 + 1^2 + 1^2 \times \sqrt{1^2 + 1^2 + n^2}}}$$

$$\Rightarrow \frac{1}{2} = \frac{n}{\sqrt{3}\sqrt{2 + n^2}} \Rightarrow 3(2 + n^2) = 4n^2 \Rightarrow n^2 = 6 \Rightarrow n = \pm \sqrt{6}.$$

FINITY INSTITU

Contact: 9811779746, 9811779744, 011-47510177

Excellence is our passion...

PA(2, 3, 4)

__ N

47. (b) If the given points be A(2, 3, 4) and B (6, 7, 8), then their mid-point N(4, 5, 6) must lie on the plane. The direction ratios of AB are 4, 4, 4, i.e., 1, 1, 1.

.. The required plane passes through N(4, 5, 6) and is normal to AB.

Thus its equation is

$$1(x-4) + 1(y-5) + 1(z-6) = 0 \Rightarrow x + y + z = 15.$$

 $1(x-4) + 1(y-5) + 1(z-6) = 0 \Rightarrow x + y + z = 15.$ **48.** (b) The direction ratios of the line are 3 - 2, -4 - (-3), -5 - 1, i.e., 1, -1, -6Hence, equation of the line joining the given points is $\frac{x-2}{1} = \frac{y+3}{-1} = \frac{z-1}{-6} = r(\text{say})$ **Ы** B(6, 7, 8)

Coordinates of any point on this line are (r + 2, -r - 3, -6r + 1)If this point lies on the given plane 2x + y + z = 7, then 2(r + 2) + (-r - 3) + (-6r + 1) $=7 \Rightarrow r=-1$

Coordinates of any point on this line are (-1 + 2, -(-1) - 3, -6(-1) + 1), i.e., (1, -2, 7).

- **50.** (c) The point (4, 2, k) on the line also lies on the plane 2x 4y + z = 7. So, $8 - 8 + k = 7 \implies k = 7$
- 51. (a) The given lines are: $\frac{x-2}{1} = \frac{y-(-1)}{-2} = \frac{z-(-2)}{1} \text{ and } \frac{x-1}{1} = \frac{y-\left(-\frac{3}{2}\right)}{3} = \frac{z-(-5)}{2}$

D.R.'S of Ist line are: $a_1 = 1$, $b_1 = -2$, $c_1 = 1$

D.R.'S of IInd line are: $a_2 = 2$, $b_2 = 3$, $c_2 = 4$

Let '0' be the angle between two lines, then

$$\cos \theta = \frac{|a_1 a_2 + b_1 b_2 + c_1 c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

$$\cos\theta = 0 \Rightarrow \theta = \frac{\pi}{2}$$

53. (c) We have, z = 0 for the point where the line intersects the curve. Therefore,

$$\frac{x-2}{3} = \frac{y+1}{2} = \frac{0-1}{-1} \implies \frac{x-2}{3} = 1 \text{ and } \frac{y+1}{2} = 1 \implies x = 5 \text{ and } y = 1$$

Put these value in $xy = c^2$, we get, $5 = c^2$

$$\Rightarrow c = \pm \sqrt{5}$$
.

54. (a) Direction ratios of AB are $(4, -4, -2) = (2, -2, -1) a^2 + b^2 + c^2 = 9$

Direction cosines are $\left(\pm\frac{2}{3}, \pm\frac{2}{3}, \pm\frac{1}{3}\right)$

55. (c) Let the components of the line vector be a, b, c. Then, $a^2 + b^2 + c^2 = (63)^2$

Also $\frac{a}{3} = \frac{b}{-2} = \frac{c}{6} = \lambda$ (say), then $a = 3\lambda$, $b = -2\lambda$ and $c = 6\lambda$ and from (i) we have

$$9\lambda^2 + 4\lambda^2 + 36\lambda^2 = (63)^2 \Rightarrow 49\lambda^2 = (63)^2 \Rightarrow \lambda = \pm \frac{63}{7} = \pm 9$$

Since, $a = 3\lambda < 0$ as the line makes an obtuse angle with x-axis, $\lambda = -9$ and the required components are -27, 18, -54.

56. (b) Let yz-plane divides the line segment joining A and B in the ratios λ : 1. The coordinates of the point C of division are $\left(\frac{3\lambda+5}{\lambda+1}, \frac{4\lambda+1}{\lambda+1}, \frac{\lambda+6}{\lambda+1}\right)$

This point lies on yz-plane. $\frac{3\lambda+5}{\lambda+1}=0 \Rightarrow \lambda=\frac{-5}{3}$.

Hence, the coordinates of c are $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$.

Excellence is our passion...

60. (c) Let the length of the line segment be r its direction cosines be l, m, n, . Then its projections on the coordinate axes are lr, mr, nr.

:.
$$lr = 2$$
, $mr = 3$ and $nr = 6$
 $\Rightarrow l^2r^2 + m^2r^2 + n^2r^2 = 4 + 9 + 36 \Rightarrow r^2 = 49 \Rightarrow r = 7$.

Contact: 9811779746, 9811779744, 011-47510177

61. (c) Let l, m, n be the direction cosine

Then,
$$l = \cos \theta$$
, $m = \cos \beta$ and $n = \cos \theta$

$$\therefore l^2 + m^2 + n^2 = 1 \Rightarrow \cos^2 \theta + \cos^2 \beta + \cos^2 \theta = 1$$

$$\Rightarrow 2\cos^2 \theta + 1 - \sin^2 \beta = 1 \Rightarrow 2\cos^2 \theta - 3\sin^2 \theta = 0$$

$$\Rightarrow 5\cos^2\theta = 3 \Rightarrow \cos^2\theta = \frac{3}{5}$$

- 62. (a) We have, $l = \cos 45^\circ = \frac{1}{\sqrt{2}}$, $m = \cos 120^\circ = \frac{-1}{2}$ and $n = \cos \theta$ $\Rightarrow l^2 + m^2 + n^2 = 1 \Rightarrow \frac{1}{2} + \frac{1}{4} + \cos^2 \theta = 1 \Rightarrow \cos^2 \theta = \frac{1}{4}$ $\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = 60^\circ.$
- 63. (b) Vectors normal to the given planes are $\vec{n}_1 = 2\hat{i} \hat{j} + 2\hat{k}$ and $\vec{n}_2 = 3\hat{i} + \hat{j} + \lambda\hat{k}$ If the planes are perpendicular, then $\vec{n}_1 \cdot \vec{n}_2 = 0 \Rightarrow 6 - 2 + 2\lambda = 0 \Rightarrow \lambda = -2$

65. (d) Here,
$$\frac{x}{3} = \frac{y}{2} = \frac{z}{-6}$$
 and $\frac{x}{1} = \frac{y}{-6} = \frac{z}{-3/2}$
Clearly, $3 \times 1 + 2 \times -6 - 6 \times \frac{-3}{2} = 0$

So, given lines are perpendicular to each other.

66. (d) We have, the line of intersection of the planes

$$\overrightarrow{r} \cdot \overrightarrow{n}_1 = d_1$$
 and $\overrightarrow{r} \cdot \overrightarrow{n}_2 = d_2$ is parallel to $\overrightarrow{n}_1 \times \overrightarrow{n}_2$.

Here,
$$\overrightarrow{n}_1 = 3\hat{i} - \hat{j} + \hat{k}$$
 and $\overrightarrow{n}_2 = \hat{i} + 4\hat{j} - 2\hat{k}$

$$\therefore \text{ Required vector} = \overrightarrow{n}_1 \times \overrightarrow{n}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 1 \\ 1 & 4 & -2 \end{vmatrix} = -2\hat{i} - 7\hat{j} + 13\hat{k}.$$