CHAPTER 1 NUMBER SYSTEMS

EXERCISE1.3 PAGE:14

Question 1. Write the following in decimal form and say what kind of decimal expansion each has: $\sqrt{5}\,$

- (i) $\frac{36}{100}$
- (ji) $\frac{1}{11}$
- (iii) $4\frac{1}{8}$
- (iv) $\frac{3}{13}$
- $\frac{2}{(v)} \frac{11}{11}$
- (vi) $\frac{329}{400}$

Solution:

(i)
$$\frac{36}{100}$$

On dividing 36 by 100, we get

 $\frac{36}{100} = 0.36$ Therefore, we conclude that $\frac{36}{100} = 0.36$, which is a terminating decimal.

(ii)
$$\frac{1}{11}$$

On dividing 1 by 11, we get

We can observe that while dividing 1 by 11, we got the remainder as 1, which will continue to be 1.

 $4\frac{1}{8}=\frac{33}{8}=4.125$ Therefore, we conclude that $\frac{1}{8}=\frac{33}{8}=4.125$, which is a non-terminating decimal and recurring decimal.

$$4\frac{1}{8} = \frac{33}{8}$$

On dividing 33 by 8, we get

We can observe that while dividing 33 by 8, we got the remainder as 0.

 $4\frac{1}{8} = \frac{33}{8} = 4.125$ Therefore, we conclude that $4\frac{1}{8} = \frac{33}{8} = 4.125$, which is a terminating decimal.

$$\frac{3}{(iv)} \frac{3}{13}$$

On dividing 3 by 13, we get

We can observe that while dividing 3 by 13 we got the remainder as 3, which will continue to be 3 after carrying out 6 continuous divisions.

$$\frac{3}{13}=0.230769..... \text{ or } \frac{3}{13}=0.\overline{230769}$$
 Therefore, we conclude that $\overline{13}=0.\overline{230769}$, which is a non-terminating decimal and recurring decimal.

$$\frac{2}{(v)} \frac{11}{11}$$

On dividing 2 by 11, we get

We can observe that while dividing 2 by 11, first we got the remainder as 2 and then 9, which will continue to be 2 and 9 alternately.

 $\frac{2}{11}=0.1818.... \text{ or } \frac{2}{11}=0\overline{18}$ Therefore, we conclude that $\overline{11}$ = 0.1818.... or $\frac{2}{11}=0\overline{18}$, which is a non-terminating decimal and recurring decimal.

$$\frac{329}{400}$$

On dividing 329 by 400, we get

$$\begin{array}{r}
0.8225 \\
400 \overline{\smash)} 329 \\
\underline{} 3290 \\
\underline{} 3290 \\
\underline{} 3290 \\
\underline{} 900 \\
\underline{} 800 \\
\underline{} 1000 \\
\underline{} 2000 \\
\underline{} \underline{} \\
\underline{} 0
\end{array}$$

We can observe that while dividing 329 by 400, we got the remainder as 0.

 $\frac{329}{400} = 0.8225$ Therefore, we conclude that $\frac{329}{400} = 0.8225$, which is a terminating decimal.

Question 2.

You know that $\frac{1}{7}=0.142857...$ Can you predict what the decimal expansions of $\frac{2}{7}$, $\frac{3}{7}$, $\frac{4}{7}$, $\frac{5}{7}$, $\frac{6}{7}$ are, without actually doing the long division? If so, how?

[Hint: Study the remainders while finding the value of $\frac{1}{7}$ carefully.]

Solution:

 $\frac{1}{7} = 0.\overline{142857} \text{ or } \frac{1}{7} = 0.142857....$

We need to find the values of $\frac{2}{7}$, $\frac{3}{7}$, $\frac{4}{7}$, $\frac{5}{7}$ and $\frac{6}{7}$, without performing long division.

We know that, $\frac{2}{7}$, $\frac{3}{7}$, $\frac{4}{7}$, $\frac{5}{7}$ and $\frac{6}{7}$ can be rewritten as

$$2 \times \frac{1}{7}$$
, $3 \times \frac{1}{7}$, $4 \times \frac{1}{7}$, $5 \times \frac{1}{7}$ and $6 \times \frac{1}{7}$.

On substituting value of $\frac{1}{7}$ as 0.142857..., we get

$$5 \times \frac{1}{7} = 5 \times 0.142857...$$
 = 0.285714.....

$$3 \times \frac{1}{7} = 3 \times 0.142857...$$
 = 0.428571

$$4 \times \frac{1}{7} = 4 \times 0.142857... = 0.571428$$

$$5 \times \frac{1}{7} = 5 \times 0.142857...$$
 = 0.714285

$$6 \times \frac{1}{7} = 6 \times 0.142857...$$
 = 0.857142

Therefore, we conclude that, we can predict the values of $\frac{2}{7}$, $\frac{3}{7}$, $\frac{4}{7}$, $\frac{5}{7}$ and $\frac{6}{7}$, without performing long division, to get

$$\frac{2}{7} = 0.\overline{285714}, \frac{3}{7} = 0.\overline{428571}, \frac{4}{7} = 0.\overline{571428}, \frac{5}{7} = 0.\overline{714285}, \text{ and } \frac{6}{7} = 0.\overline{857142}$$

Question 3. Express the following in the form $\frac{1}{q}$, where p and q are integers and q \neq 0.

- (i) 0.6
- (ii) $0.4\overline{7}$
- (iii) 0.001

Solution:

(i) Let
$$x = 0.\overline{6} \Rightarrow x = 0.6666...(a)$$

We need to multiply both sides by 10 to get

$$10x = 6.6666....(b)$$

We need to subtract (a)from (b), to get

$$10x = 6.6666...$$

 $-x = 0.6666...$
 $9x = 6$

We can also write 9x = 6 as $x = \frac{6}{9}$ or $x = \frac{2}{3}$.

Therefore, on converting $0.\overline{6}$ in the q form, we get the answer a $\frac{2}{3}$.

(ii) Let
$$x = 0.4\overline{7} \Rightarrow x = 0.47777.....(a)$$

We need to multiply both sides by 10 to get

$$10x = 4.7777....(b)$$

We need to subtract (a)from (b), to get

$$10x = 4.7777....$$
$$-x = 0.4777....$$
$$9x = 4.3$$

We can also write 9x = 4.3 as $x = \frac{4.3}{9}$ or $x = \frac{43}{90}$.

Therefore, on converting $0.4\overline{7}$ in the $\frac{p}{q}$ form, we get the answer as $\frac{43}{90}$.

(iii) Let
$$x = 0.\overline{001} \Rightarrow x = 0.001001....(a)$$

We need to multiply both sides by 1000 to get

$$1000x = 1.001001....$$
(b)

We need to subtract (a)from (b), to get

$$1000x = 1.001001....$$
$$-x = 0.001001....$$
$$999x = 1$$

We can also write
$$999x = 1$$
 as $x = \frac{1}{999}$

Therefore, on converting
$$0.\overline{001}$$
 in the q form, we get the answer as 999 4

Question 4. Express 0.99999... in the form q. Are you surprised by your answer? Discuss why the answer makes sense with your teacher and classmates. Solution:

Let
$$x = 0.99999.....(a)$$

We need to multiply both sides by 10 to get

$$10x = 9.9999....(b)$$

We need to subtract (a)from (b), to get

$$10x = 9.99999...$$

 $-x = 0.99999...$

We can also write
$$9x = 9$$
 as $x = \frac{9}{9}$ or $x = 1$.

Therefore, on converting 0.99999.... in the $\frac{p}{q}$ form, we get the answer as 1.

Yes, at a glance we are surprised at our answer.

But the answer makes sense when we observe that 0.9999...... goes on forever. SO there is not gap between 1 and 0.9999...... and hence they are equal.

Question 5. What can the maximum number of digits be in the recurring block of $\frac{1}{17}$ digits in the decimal expansion of $\frac{1}{17}$? Perform the division to check your answer. Solution :

We need to find the number of digits in the recurring block of $\frac{1}{17}$.

1

Let us perform the long division to get the recurring block of $\overline{17}$.

We need to divide 1 by 17, to get

We can observe that while dividing 1 by 17 we got the remainder as 1, which will continue to be 1 after carrying out 16 continuous divisions.

 $\frac{1}{17}=0.0588235294117647..... \text{ or } \frac{1}{17}=0.\overline{0588235294117647}$ Therefore, we conclude that $\frac{1}{17}=0.0588235294117647.....$ which is a non-terminating decimal and recurring decimal.

р

Question 6. Look at several examples of rational numbers in the form Q (q \neq 0), where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?

Solution:

p

Let us consider the examples of the form q that are terminating decimals.

$$\frac{5}{2} = 2.5$$

$$\frac{5}{4} = 1.25$$

$$\frac{2}{5} = 0.4$$

$$\frac{2}{10} = 0.2$$

$$\frac{5}{16} = 0.3125$$

We can observe that the denominators of the above rational numbers have powers of 2, 5 or both.

Therefore, we can conclude that the property, which ${\bf q}$ must satisfy in ${}^{q}\,$, so that the

rational number $^{\it q}$ is a terminating decimal is that q must have powers of 2, 5 or both.

Question 7. Write three numbers whose decimal expansions are non-terminating non-recurring.

Solution: The three numbers that have their expansions as non-terminating on recurring decimal are given below.

- 0.04004000400004
- 0.07007000700007
- 0.013001300013000013

Question 8. Find three different irrational numbers between the rational numbers

and
$$\frac{5}{7}$$
 and $\frac{9}{11}$.

Solution

Let us convert $\frac{5}{7}$ and $\frac{9}{11}$ into decimal form, to get

$$\frac{5}{7} = 0.714285...$$
 and $\frac{9}{11} = 0.818181...$

Three irrational numbers that lie between 0.714285.... and 0.818181.... are:

- 0.73073007300073
- 0.74074007400074
- 0.76076007600076

Question 9. Classify the following numbers as rational or irrational:

(i)√23

- (ii)√225
- (iii) 0.3796
- (iv) 7.478478...
- (v) 1.101001000100001...

Solution:

(i)
$$\sqrt{23}$$

We know that on finding the square root of 23, we will not get an integer.

Therefore, we conclude that $\sqrt{23}$ is an irrational number.

(ii)
$$\sqrt{225}$$

We know that on finding the square root of 225, we get 15, which is an integer.

Therefore, we conclude that $\sqrt{225}$ is a rational number.

(iii) 0.3796

We know that 0.3796 can be converted into ${}^q\,$.

While, converting 0.3796 into q form, we get

$$0.3796 = \frac{3796}{10000}$$

The rational number $\overline{10000}$ can be converted into lowest fractions, to get $\overline{2500}$.

We can observe that 0.3796 can be converted into a rational number.

Therefore, we conclude that 0.3796 is a rational number.

(iv) 7.478478....

We know that 7.478478.... is a non-terminating recurring decimal, which can be

converted into q form.

While, converting 7.478478.... into q form, we get

$$x = 7.478478...$$
 $...(a)$

$$1000x = 7478.478478....(b)$$

While, subtracting (a) from (b), we get

$$1000x = 7478.478478...$$

$$-x = 7.478478...$$

$$999x = 7471$$

We know that 999x = 7471 can also be written as $x = \frac{7471}{999}$

Therefore, we conclude that 7.478478.... is a rational number.

(v)1.101001000100001

We can observe that the number 1.10100100010001.... is a non-terminating on recurring decimal.

p

We know that non-terminating and non-recurring decimals cannot be converted into q form.

Therefore, we conclude that 1.101001000100001.... is an irrational number.