CHAPTER 11 SURFACE AREAS AND VOLUMES

Exercise 11.4

Page No: 150

- 1. Find the volume of a sphere whose radius is
- (i) 7 cm (ii) 0.63 m

(Assume $\pi = 22/7$)

Solution:

(i) Radius of the sphere, r = 7 cm

Using, Volume of the sphere = $(4/3) \pi r^3$

$$= (4/3) \times (22/7) \times 7^3$$

= 4312/3

Hence, volume of the sphere is 4312/3 cm³

(ii) Radius of the sphere, r = 0.63 m

Using, volume of sphere = $(4/3) \pi r^3$

$$= (4/3) \times (22/7) \times 0.63^{3}$$

= 1.0478

Hence, volume of the sphere is 1.05 m³ (approx).

- 2. Find the amount of water displaced by a solid spherical ball of diameter
- (i) 28 cm (ii) 0.21 m

(Assume $\pi = 22/7$)

Solution:

(i) Diameter = 28 cm

Radius, r = 28/2 cm = 14 cm

Volume of the solid spherical ball = $(4/3) \pi r^3$

Volume of the ball = $(4/3) \times (22/7) \times 14^3 = 34496/3$

Hence, volume of the ball is 34496/3 cm³

(ii) Diameter = 0.21 m

Radius of the ball =0.21/2 m= 0.105 m

Volume of the ball = $(4/3)\pi r^3$

Volume of the ball = $(4/3) \times (22/7) \times 0.105$ ³ m³

Hence, volume of the ball = 0.004851 m³

3. The diameter of a metallic ball is 4.2cm. What is the mass of the ball, if the density of the metal is 8.9 g per cm³? (Assume π =22/7)

Solution:

Given,

Diameter of a metallic ball = 4.2 cm

Radius(r) of the metallic ball, r = 4.2/2 cm = 2.1 cm

Volume formula = $4/3 \, \pi r^3$

Volume of the metallic ball = $(4/3)\times(22/7)\times2.1$ cm³

Volume of the metallic ball = 38.808 cm³

Now, using the relationship between density, mass and volume,

Density = Mass/Volume

Mass = Density × volume

 $= (8.9 \times 38.808) g$

= 345.3912 g

Mass of the ball is 345.39 g (approx).

4. The diameter of the moon is approximately one-fourth of the diameter of the earth. What fraction of the volume of the earth is the volume of the moon?

Solution:

Let the diameter of the earth be "d". Therefore, the radius of the earth will be d/2.

Diameter of the moon will be d/4, and the radius of the moon will be d/8.

Find the volume of the moon.

Volume of the moon =
$$(4/3) \pi r^3 = (4/3) \pi (d/8)^3 = 4/3\pi (d^3/512)$$

Find the volume of the earth

Volume of the earth =
$$(4/3) \pi r^3 = (4/3) \pi (d/2)^3 = 4/3\pi (d^3/8)$$

Fraction of the volume of the earth is the volume of the moon

Volume of the moon/ volume of the earth
$$\frac{\frac{4}{3}\pi(\frac{d^3}{512})}{\frac{4}{3}\pi(\frac{d^3}{8})} = 8/512 = 1/64$$

Answer: Volume of the moon is of the 1/64 volume of the earth.

5. How many litres of milk can a hemispherical bowl of diameter 10.5cm hold? (Assume π = 22/7)

Solution:

Diameter of the hemispherical bowl = 10.5 cm

Radius of the hemispherical bowl, r = 10.5/2 cm = 5.25 cm

Formula for volume of the hemispherical bowl = $(2/3) \pi r^3$

Volume of the hemispherical bowl = $(2/3) \times (22/7) \times 5.25^{\circ} = 303.1875$

Volume of the hemispherical bowl is 303.1875 cm³

Capacity of the bowl = (303.1875)/1000 L = 0.303 litres(approx.)

Therefore, the hemispherical bowl can hold 0.303 litres of milk.

6. A hemispherical tank is made up of an iron sheet 1cm thick. If the inner radius is 1 m, then find the volume of the iron used to make the tank.

(Assume $\pi = 22/7$)

Solution:

Inner Radius of the tank, (r) = 1m

Outer Radius (R) = 1.01m

Volume of the iron used in the tank = $(2/3) \pi(R^3 - r^3)$

Put values,

Volume of the iron used in the hemispherical tank = $(2/3) \times (22/7) \times (1.01^3 - 1^3)$ = 0.06348

So, volume of the iron used in the hemispherical tank is 0.06348 m³.

7. Find the volume of a sphere whose surface area is 154 cm 2 . (Assume π = 22/7)

Solution:

Let r be the radius of a sphere.

Surface area of the sphere = $4\pi r^2$

$$4\pi r^2 = 154 \text{ cm}^2 \text{ (given)}$$

$$r^2 = (154 \times 7)/(4 \times 22)$$

$$r = 7/2$$

The radius is 7/2 cm.

Now,

Volume of the sphere = $(4/3) \pi r^3$

Volume of the sphere =
$$(4/3)\times(22/7)\times(7/2)^3 = 179\frac{2}{3}$$

Volume of the sphere is $179\frac{2}{3}$ cm³

- 8. A dome of a building is in the form of a hemisphere. From inside, it was whitewashed at the cost of Rs. 4989.60. If the cost of white-washing is 20 per square metre, find the
- (i) inside surface area of the dome (ii) volume of the air inside the dome

(Assume
$$\pi = 22/7$$
)

Solution:

(i) Cost of whitewashing the dome from inside = Rs 4989.60

Cost of whitewashing 1m² area = Rs 20

CSA of the inner side of dome = $498.96/2 \text{ m}^2 = 249.48 \text{ m}^2$

(ii) Let the inner radius of the hemispherical dome be r.

CSA of the inner side of dome = 249.48 m² (from (i))

Formula to find CSA of a hemisphere = $2\pi r^2$

$$2\pi r^2 = 249.48$$

$$2\times(22/7)\times r^2 = 249.48$$

$$r^2 = (249.48 \times 7)/(2 \times 22)$$

$$r^2 = 39.69$$

$$r = 6.3$$

So, the radius is 6.3 m.

Volume of air inside the dome = Volume of hemispherical dome

Using the formula, the volume of the hemisphere = $2/3 \, \pi r^3$

$$= (2/3) \times (22/7) \times 6.3 \times 6.3 \times 6.3$$

$$= 523.9(approx.)$$

Answer: The volume of air inside the dome is 523.9 m³.

9. Twenty-seven solid iron spheres, each of radius r and surface area S are melted to form a sphere with surface area S'. Find the

- (i) radius r' of the new sphere,
- (ii) ratio of Sand S'.

Solution:

Volume of the solid sphere = $(4/3)\pi r^3$

Volume of twenty seven solid sphere = $27 \times (4/3) \pi r^3 = 36 \pi r^3$

(i) New solid iron sphere radius = r'

Volume of this new sphere = $(4/3)\pi(r')^3$

$$(4/3)\pi(r')^3 = 36 \pi r^3$$

$$(r')^3 = 27r^3$$

$$r' = 3r$$

Radius of the new sphere will be 3r (thrice the radius of the original sphere)

(ii) Surface area of the iron sphere of radius r, S = $4\pi r^2$

Surface area of the iron sphere of radius $r' = 4\pi (r')^2$

Now

$$S/S' = (4\pi r^2)/(4\pi (r')^2)$$

$$S/S' = r^2/(3r')^2 = 1/9$$

The ratio of S and S' is 1:9.

10. A capsule of medicine is in the shape of a sphere of diameter 3.5mm. How much medicine (in mm 3) is needed to fill this capsule? (Assume π = 22/7)

Solution:

Diameter of the capsule = 3.5 mm

Radius of the capsule, say r = diameter/2 = (3.5/2) mm = 1.75 mm

Volume of the spherical capsule = $4/3 \, \pi r^3$

Volume of the spherical capsule = $(4/3) \times (22/7) \times (1.75)^3 = 22.458$

Answer: The volume of the spherical capsule is 22.46 mm³.