CHAPTER 1 NUMBER SYSTEMS

EXERCISE 1.5 PAGE:23

Question 1. Find:

- $(i)^{64^{\frac{1}{2}}}$
- (ii) $32^{\frac{1}{5}}$
- $\text{(iii)}^{\textstyle 125^{\frac{1}{3}}}$

Solution:

(i)
$$64^{\frac{1}{2}}$$

We know that

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
, where $a > 0$.

We conclude that $64^{\frac{1}{2}}$ can also be written as

$$\sqrt[2]{64} = \sqrt[2]{8 \times 8}$$

$$\sqrt[2]{64} = \sqrt[2]{8 \times 8} = 8.$$

Therefore, the value of $64^{\frac{1}{2}}$ will be 8.

(ii)
$$32^{\frac{1}{5}}$$

We know that

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
, where $a > 0$.

We conclude that $32^{\frac{1}{5}}$ can also be written as

$$\sqrt[5]{32} = \sqrt[2]{2 \times 2 \times 2 \times 2 \times 2}$$

$$\sqrt[5]{32} = \sqrt[2]{2 \times 2 \times 2 \times 2 \times 2} = 2$$

Therefore, the value of $32^{\frac{1}{5}}$ will be 2.

We know that

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
, where $a > 0$.

We conclude that $^{125^{\frac{1}{3}}}$ can also be written as

$$\sqrt[3]{125} = \sqrt[3]{5 \times 5 \times 5}$$

$$\sqrt[3]{125} = \sqrt[3]{5 \times 5 \times 5} = 5$$

Therefore, the value of $^{125^{\frac{1}{3}}}$ will be 5.

Question 2. Find:

(ii)
$$32^{\frac{2}{5}}$$

$$(iii)$$
 $16^{\frac{3}{4}}$

$$(iv)$$
 $125^{\frac{-1}{3}}$

Solution:

We know that

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
, where $a > 0$.

We conclude that $9^{\frac{3}{2}}$ can also be written as

$$\sqrt[2]{(9)^3} = \sqrt[2]{9 \times 9 \times 9} = \sqrt[2]{3 \times 3 \times 3 \times 3 \times 3 \times 3}$$

$$\sqrt[2]{\left(9\right)^3} = \sqrt[2]{3 \times 3 \times 3 \times 3 \times 3 \times 3}$$

$$=3\times3\times3$$

=27

Therefore, the value of $9^{\frac{3}{2}}$ will be 27.

(ii)
$$32^{\frac{2}{5}}$$

We know that

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
, where $a > 0$.

We conclude that $32^{\frac{2}{5}}$ can also be written as

$$= 5\sqrt{(2\times2\times2\times2\times2)(2\times2\times2\times2\times2)}$$

$$=2\times2$$

Therefore, the value of $32^{\frac{2}{3}}$ will be 4.

(iii)
$$16^{\frac{3}{4}}$$

We know that

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
, where $a > 0$.

We conclude that $16^{\frac{3}{4}}$ can also be written as

$$= 4\sqrt{(2\times2\times2\times2)(2\times2\times2\times2)(2\times2\times2\times2)}$$

$$=2\times2\times2$$

= 8

Therefore, the value of $16^{\frac{3}{4}}$ will be 8.

(iv)
$$125^{\frac{-1}{3}}$$

We know that

$$a^{-n} = \frac{1}{a^n}$$

We conclude that $125^{\frac{-1}{3}}$ can also be written as $125^{\frac{1}{3}}$, or $\left(\frac{1}{125}\right)^{\frac{1}{3}}$.

We know that

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
, where $a > 0$.

We know that $\left(\frac{1}{125}\right)^{\frac{1}{3}}$ can also be written as

$$\sqrt[3]{\left(\frac{1}{125}\right)} = \sqrt[3]{\left(\frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}\right)}$$

$$=\frac{1}{5}$$
.

Therefore, the value of $^{125^{\frac{-1}{3}}}$ will be $^{\frac{1}{5}}$.

Question 3. Simplify:

(i)
$$2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$$

$$\left(ii\right)^{\left(3^{\frac{1}{3}}\right)^{7}}$$

$$\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$$

$$(iv)^{7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}}$$

Solution:

(i)
$$2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$$

We know that

$$a^m \cdot a^n = a^{(m+n)}.$$

We can conclude that

$$2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} = (2)^{\frac{2}{3} + \frac{1}{5}}$$
.

$$2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} = (2)^{\frac{10+3}{15}} = (2)^{\frac{13}{15}}$$

Therefore, the value of $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$ will be $(2)^{\frac{13}{15}}$.

$$\left(3^{\frac{1}{3}}\right)^7$$

We know that $a^m \times a^n = a^{m+n}$

We conclude that $\left(3^{\frac{1}{3}}\right)^7$ can also be written as $\left(3^{\frac{7}{3}}\right)$.

$$\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$$
 (iii) $11^{\frac{1}{4}}$

We know that

$$\frac{a^m}{a^n} = a^{m-n}$$

We conclude that

$$\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} = 11^{\frac{1}{2} - \frac{1}{4}}$$

$$\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} = 11^{\frac{1}{2} - \frac{1}{4}} = 11^{\frac{2-1}{4}}$$

$$\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$$

 $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$ Therefore, the value of $11^{\frac{1}{4}}$ will be $11^{\frac{1}{4}}$.

(iv)
$$7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$$

We know that

$$a^m \cdot b^m = (a \times b)^m$$
.

We can conclude that

$$7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}} = (7 \times 8)^{\frac{1}{2}}.$$

$$7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}} = (7 \times 8)^{\frac{1}{2}} = (56)^{\frac{1}{2}}$$

Therefore, the value of $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$ will be $(56)^{\frac{1}{2}}$.