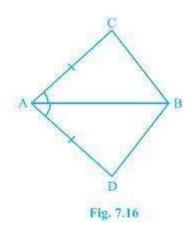
Chapter 7 – Triangles

Exercise: 7.1 Page No: 92

1. In quadrilateral ACBD, AC = AD and AB bisect \angle A (see Fig. 7.16). Show that \triangle ABC \cong \triangle ABD. What can you say about BC and BD?



Solution:

It is given that AC and AD are equal i.e. AC = AD and the line segment AB bisects ∠A.

We will have to now prove that the two triangles ABC and ABD are similar i.e. $\triangle ABC \cong \triangle ABD$

Proof:

Consider the triangles ΔABC and ΔABD ,

(i) AC = AD (It is given in the question)

(ii) AB = AB (Common)

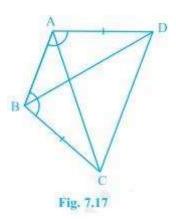
(iii) $\angle CAB = \angle DAB$ (Since AB is the bisector of angle A)

So, by **SAS** congruency criterion, $\triangle ABC \cong \triangle ABD$.

For the 2nd part of the question, BC and BD are of equal lengths by the rule of C.P.C.T.

2. ABCD is a quadrilateral in which AD = BC and ∠DAB = ∠CBA (see Fig. 7.17). Prove that

- (i) $\triangle ABD \cong \triangle BAC$
- (ii) BD = AC
- (iii) $\angle ABD = \angle BAC$.



Solution:

The given parameters from the questions are $\angle DAB = \angle CBA$ and AD = BC.

(i) \triangle ABD and \triangle BAC are similar by SAS congruency as

AB = BA (It is the common arm)

 \angle DAB = \angle CBA and AD = BC (These are given in the question)

So, triangles ABD and BAC are similar i.e. \triangle ABD \cong \triangle BAC. (Hence proved).

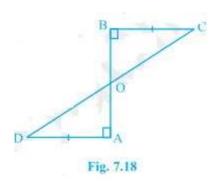
(ii) It is now known that $\triangle ABD \cong \triangle BAC$ so,

BD = AC (by the rule of CPCT).

(iii) Since $\triangle ABD \cong \triangle BAC$ so,

Angles $\angle ABD = \angle BAC$ (by the rule of CPCT).

3. AD and BC are equal perpendiculars to a line segment AB (see Fig.7.18). Show that CD bisects AB.



Solution:

It is given that AD and BC are two equal perpendiculars to AB.

We will have to prove that CD is the bisector of AB

Now,

Triangles $\triangle AOD$ and $\triangle BOC$ are similar by AAS congruency since:

- (i) $\angle A = \angle B$ (They are perpendiculars)
- (ii) AD = BC (As given in the question)
- (iii) $\angle AOD = \angle BOC$ (They are vertically opposite angles)

 $\therefore \triangle AOD \cong \triangle BOC.$

So, AO = OB (by the rule of CPCT).

Thus, CD bisects AB (Hence proved).

4. I and m are two parallel lines intersected by another pair of parallel lines p and q (see Fig. 7.19). Show that $\triangle ABC \cong \triangle CDA$.

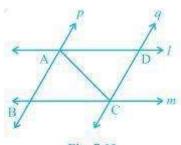


Fig. 7.19

Solution:

It is given that p || q and I || m

To prove:

Triangles ABC and CDA are similar i.e. \triangle ABC \cong \triangle CDA

Proof:

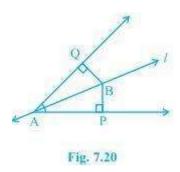
Consider the \triangle ABC and \triangle CDA,

- (i) \angle BCA = \angle DAC and \angle BAC = \angle DCA Since they are alternate interior angles
- (ii) AC = CA as it is the common arm

So, by **ASA congruency criterion,** $\triangle ABC \cong \triangle CDA$.

5. Line I is the bisector of an angle $\angle A$ and B is any point on I. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see Fig. 7.20). Show that:

- (i) $\triangle APB \cong \triangle AQB$
- (ii) BP = BQ or B is equidistant from the arms of $\angle A$.



Solution:

It is given that the line "I" is the bisector of angle ∠A and the line segments BP and BQ are perpendiculars drawn from I.

(i) \triangle APB and \triangle AQB are similar by AAS congruency because:

 $\angle P = \angle Q$ (They are the two right angles)

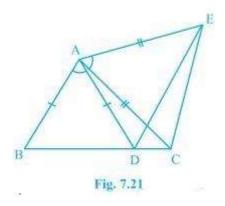
AB = AB (It is the common arm)

 $\angle BAP = \angle BAQ$ (As line I is the bisector of angle A)

So, $\triangle APB \cong \triangle AQB$.

(ii) By the rule of CPCT, BP = BQ. So, it can be said the point B is equidistant from the arms of ∠A.

6. In Fig. 7.21, AC = AE, AB = AD and \angle BAD = \angle EAC. Show that BC = DE.



Solution:

It is given in the question that AB = AD, AC = AE, and \angle BAD = \angle EAC

To prove:

The line segment BC and DE are similar i.e. BC = DE

Proof:

We know that $\angle BAD = \angle EAC$

Now, by adding ∠DAC on both sides we get,

$$\angle BAD + \angle DAC = \angle EAC + \angle DAC$$

This implies, $\angle BAC = \angle EAD$

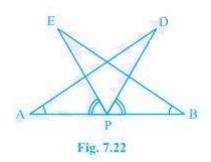
Now, \triangle ABC and \triangle ADE are similar by SAS congruency since:

- (i) AC = AE (As given in the question)
- (ii) $\angle BAC = \angle EAD$
- (iii) AB = AD (It is also given in the question)
- \div Triangles ABC and ADE are similar i.e. $\Delta ABC \cong \Delta ADE.$

So, by the rule of CPCT, it can be said that BC = DE.

7. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that \angle BAD = \angle ABE and \angle EPA = \angle DPB (see Fig. 7.22). Show that

- (i) $\triangle DAP \cong \triangle EBP$
- (ii) AD = BE



Solutions:

In the question, it is given that P is the mid-point of line segment AB. Also, $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$

(i) It is given that $\angle EPA = \angle DPB$

Now, add ∠DPE on both sides,

$$\angle EPA + \angle DPE = \angle DPB + \angle DPE$$

This implies that angles DPA and EPB are equal i.e. \angle DPA = \angle EPB

Now, consider the triangles DAP and EBP.

$$\angle DPA = \angle EPB$$

AP = BP (Since P is the mid-point of the line segment AB)

 $\angle BAD = \angle ABE$ (As given in the question)

So, by **ASA congruency**, $\Delta DAP \cong \Delta EBP$.

- (ii) By the rule of CPCT, AD = BE.
- 8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see Fig. 7.23). Show that:
- (i) \triangle AMC \cong \triangle BMD
- (ii) ∠DBC is a right angle.
- (iii) $\triangle DBC \cong \triangle ACB$
- (iv) $CM = \frac{1}{2}AB$

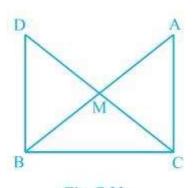


Fig. 7.23

Solution:

It is given that M is the mid-point of the line segment AB, \angle C = 90°, and DM = CM

(i) Consider the triangles ΔAMC and ΔBMD:

AM = BM (Since M is the mid-point)

CM = DM (Given in the question)

 \angle CMA = \angle DMB (They are vertically opposite angles)

So, by **SAS** congruency criterion, $\triangle AMC \cong \triangle BMD$.

(ii)
$$\angle ACM = \angle BDM$$
 (by CPCT)

: AC || BD as alternate interior angles are equal.

Now, \angle ACB + \angle DBC = 180° (Since they are co-interiors angles)

(iii) In \triangle DBC and \triangle ACB,

BC = CB (Common side)

 \angle ACB = \angle DBC (They are right angles)

DB = AC (by CPCT)

So, $\triangle DBC \cong \triangle ACB$ by **SAS congruency**.

(iv) DC = AB (Since
$$\triangle$$
DBC \cong \triangle ACB)

$$\Rightarrow$$
 DM = CM = AM = BM (Since M the is mid-point)

So,
$$DM + CM = BM + AM$$

Hence, CM + CM = AB

 \Rightarrow CM = ($\frac{1}{2}$) AB