Chapter 6 LINES AND ANGLES

Exercise: 6.1 Page No: 76

1. In Fig. 6.13, lines AB and CD intersect at O. If \angle AOC + \angle BOE = 70° and \angle BOD = 40°, find \angle BOE and reflex \angle COE.

Solution:

From the diagram, we have

 $(\angle AOC + \angle BOE + \angle COE)$ and $(\angle COE + \angle BOD + \angle BOE)$ forms a straight line.

So, $\angle AOC + \angle BOE + \angle COE = \angle COE + \angle BOD + \angle BOE = 180^{\circ}$

Now, by putting the values of $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$ we get

 \angle COE = 110° and \angle BOE = 30°

So, reflex \angle COE = 360 $^{\circ}$ - 110 $^{\circ}$ = 250 $^{\circ}$

2. In Fig. 6.14, lines XY and MN intersect at O. If \angle POY = 90° and a : b = 2 : 3, find c.

Solution:

We know that the sum of linear pair is always equal to 180°

So,

$$\angle POY + a + b = 180^{\circ}$$

Putting the value of $\angle POY = 90^{\circ}$ (as given in the question), we get,

$$a+b = 90^{\circ}$$

Now, it is given that a:b = 2:3, so

Let a be 2x and b be 3x

$$\therefore 2x + 3x = 90^{\circ}$$

Solving this, we get

$$5x = 90^{\circ}$$

So,
$$x = 18^{\circ}$$

$$\therefore a = 2 \times 18^{\circ} = 36^{\circ}$$

Similarly, b can be calculated, and the value will be

$$b = 3 \times 18^{\circ} = 54^{\circ}$$

From the diagram, b+c also forms a straight angle, so

$$b+c = 180^{\circ}$$

$$c+54^{\circ} = 180^{\circ}$$

$$\therefore$$
 c = 126°

3. In Fig. 6.15, \angle PQR = \angle PRQ, then prove that \angle PQS = \angle PRT.

Fig. 6.15

Solution:

Since ST is a straight line, so

$$\angle PQS+\angle PQR = 180^{\circ}$$
 (linear pair) and

$$\angle PRT + \angle PRQ = 180^{\circ}$$
 (linear pair)

Now,
$$\angle PQS + \angle PQR = \angle PRT + \angle PRQ = 180^{\circ}$$

Since $\angle PQR = \angle PRQ$ (as given in the question)

 $\angle PQS = \angle PRT$. (Hence proved).

4. In Fig. 6.16, if x+y = w+z, then prove that AOB is a line.

Solution:

To prove AOB is a straight line, we will have to prove x+y is a linear pair

i.e.
$$x+y = 180^{\circ}$$

We know that the angles around a point are 360°, so

$$x+y+w+z = 360^{\circ}$$

In the question, it is given that,

$$x+y = w+z$$

So,
$$(x+y)+(x+y) = 360^{\circ}$$

$$2(x+y) = 360^{\circ}$$

$$\therefore$$
 (x+y) = 180° (Hence proved).

5. In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that \angle ROS = $\frac{1}{2}$ (\angle QOS – \angle POS).

Solution:

In the question, it is given that (OR \perp PQ) and \angle POQ = 180°

We can write it as $\angle ROP = \angle ROQ = 90^{\circ}$

We know that

$$\angle ROP = \angle ROQ$$

It can be written as

$$\angle POS + \angle ROS = \angle ROQ$$

$$\angle POS + \angle ROS = \angle QOS - \angle ROS$$

$$\angle$$
SOR + \angle ROS = \angle QOS - \angle POS

So we get

$$2\angle ROS = \angle QOS - \angle POS$$

Or,
$$\angle ROS = 1/2 (\angle QOS - \angle POS)$$
 (Hence proved).

6. It is given that \angle XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects \angle ZYP, find \angle XYQ and reflex \angle QYP.

Solution:

Here, XP is a straight line

So,
$$\angle XYZ + \angle ZYP = 180^{\circ}$$

Putting the value of $\angle XYZ = 64^{\circ}$, we get

$$64^{\circ} + \angle ZYP = 180^{\circ}$$

From the diagram, we also know that $\angle ZYP = \angle ZYQ + \angle QYP$

Now, as YQ bisects ∠ZYP,

$$\angle ZYQ = \angle QYP$$

Or,
$$\angle$$
ZYP = $2\angle$ ZYQ

$$\therefore \angle ZYQ = \angle QYP = 58^{\circ}$$

Again, $\angle XYQ = \angle XYZ + \angle ZYQ$

By putting the value of \angle XYZ = 64° and \angle ZYQ = 58°, we get.

$$\angle XYQ = 64^{\circ} + 58^{\circ}$$

$$Or$$
, $\angle XYQ = 122^{\circ}$

Now, reflex $\angle QYP = 180^{\circ} + XYQ$

We computed that the value of $\angle XYQ = 122^{\circ}$.

So,

$$\angle QYP = 180^{\circ} + 122^{\circ}$$