CHAPTER 8 QUADRILATERALS

EXERCISE 8.1 PAGE:110

1. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Solution:

Given that,

AC = BD

To show that ABCD is a rectangle if the diagonals of a parallelogram are equal

To show ABCD is a rectangle, we have to prove that one of its interior angles is right-angled.

Proof,

In \triangle ABC and \triangle BAD,

AB = BA (Common)

BC = AD (Opposite sides of a parallelogram are equal)

Therefore, $\triangle ABC \cong \triangle BAD$ [SSS congruency]

 $\angle A = \angle B$ [Corresponding parts of Congruent Triangles]

also,

 $\angle A + \angle B = 180^{\circ}$ (Sum of the angles on the same side of the transversal)

$$\Rightarrow \angle A = 90^{\circ} = \angle B$$

Therefore, ABCD is a rectangle.

Hence Proved.

2. Show that the diagonals of a square are equal and bisect each other at right angles.

Solution:

Let ABCD be a square and its diagonals AC and BD intersect each other at O.

To show that,

```
AC = BD
AO = OC
and ∠AOB = 90°
Proof,
In \triangleABC and \triangleBAD,
AB = BA (Common)
\angle ABC = \angle BAD = 90^{\circ}
BC = AD (Given)
\triangleABC \cong \triangleBAD [SAS congruency]
Thus,
AC = BD [CPCT]
diagonals are equal.
Now,
In \triangle AOB and \triangle COD,
\angle BAO = \angle DCO (Alternate interior angles)
\angle AOB = \angle COD (Vertically opposite)
AB = CD (Given)
```

, $\triangle AOB \cong \triangle COD$ [AAS congruency]

```
Thus,
AO = CO[CPCT].
, Diagonal bisect each other.
Now,
In \triangle AOB and \triangle COB,
OB = OB (Given)
AO = CO (diagonals are bisected)
AB = CB (Sides of the square)
, \triangle AOB \cong \triangle COB [SSS congruency]
also, ∠AOB = ∠COB
\angle AOB + \angle COB = 180^{\circ} (Linear pair)
```

, Diagonals bisect each other at right angles

3. Diagonal AC of a parallelogram ABCD bisects \angle A (see Fig. 8.11). Show that

(i) it bisects ∠C also,

Thus, $\angle AOB = \angle COB = 90^{\circ}$

(ii) ABCD is a rhombus.

Solution:

(i) In \triangle ADC and \triangle CBA,

AD = CB (Opposite sides of a parallelogram)

DC = BA (Opposite sides of a parallelogram)

AC = CA (Common Side)

, \triangle ADC \cong \triangle CBA [SSS congruency]

Thus,

 \angle ACD = \angle CAB by CPCT

and $\angle CAB = \angle CAD$ (Given)

 $\Rightarrow \angle ACD = \angle BCA$

Thus,

AC bisects ∠C also.

(ii) $\angle ACD = \angle CAD$ (Proved above)

⇒ AD = CD (Opposite sides of equal angles of a triangle are equal)

Also, AB = BC = CD = DA (Opposite sides of a parallelogram)

Thus,

ABCD is a rhombus.

4. ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$.

Show that:

- (i) ABCD is a square
- (ii) Diagonal BD bisects $\angle B$ as well as $\angle D$.

Solution:

(i) $\angle DAC = \angle DCA$ (AC bisects $\angle A$ as well as $\angle C$)

 \Rightarrow AD = CD (Sides opposite to equal angles of a triangle are equal)

also, CD = AB (Opposite sides of a rectangle)

$$AB = BC = CD = AD$$

Thus, ABCD is a square.

(ii) In ΔBCD,

$$BC = CD$$

 \Rightarrow \angle CDB = \angle CBD (Angles opposite to equal sides are equal)

also, \angle CDB = \angle ABD (Alternate interior angles)

$$\Rightarrow \angle CBD = \angle ABD$$

Thus, BD bisects ∠B

Now,

$$\angle$$
CBD = \angle ADB

Thus, BD bisects $\angle B$ as well as $\angle D$.

5. In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig. 8.12). Show that:

- (i) $\triangle APD \cong \triangle CQB$
- (ii) AP = CQ
- (iii) $\triangle AQB \cong \triangle CPD$
- (iv) AQ = CP
- (v) APCQ is a parallelogram

Solution:

(i) In \triangle APD and \triangle CQB,

 $\angle ADP = \angle CBQ$ (Alternate interior angles)

AD = BC (Opposite sides of a parallelogram)

Thus, $\triangle APD \cong \triangle CQB$ [SAS congruency]

- (ii) AP = CQ by CPCT as \triangle APD \cong \triangle CQB.
- (iii) In \triangle AQB and \triangle CPD,

$$BQ = DP (Given)$$

 $\angle ABQ = \angle CDP$ (Alternate interior angles)

AB = CD (Opposite sides of a parallelogram)

Thus, $\triangle AQB \cong \triangle CPD$ [SAS congruency]

(iv) As $\triangle AQB \cong \triangle CPD$

AQ = CP[CPCT]

(v) From the questions (ii) and (iv), it is clear that APCQ has equal opposite sides and also has equal and opposite angles. , APCQ is a parallelogram.

6. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.13). Show that

- (i) $\triangle APB \cong \triangle CQD$
- (ii) AP = CQ

Solution:

(i) In $\triangle APB$ and $\triangle CQD$,

 $\angle ABP = \angle CDQ$ (Alternate interior angles)

 $\angle APB = \angle CQD$ (= 90° as AP and CQ are perpendiculars)

AB = CD (ABCD is a parallelogram)

, $\triangle APB \cong \triangle CQD$ [AAS congruency]

(ii) As $\triangle APB \cong \triangle CQD$.

, AP = CQ [CPCT]

7. ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.14). Show that

(i)
$$\angle A = \angle B$$

(iii)
$$\triangle ABC \cong \triangle BAD$$

[Hint: Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]

Solution:

To Construct: Draw a line through C parallel to DA intersecting AB produced at E.

(i) CE = AD (Opposite sides of a parallelogram)

$$,BC=CE$$

also,

 $\angle A+\angle CBE=180^{\circ}$ (Angles on the same side of transversal and $\angle CBE=\angle CEB$)

$$\angle$$
B + \angle CBE = 180° (As Linear pair)

$$\Rightarrow \angle A = \angle B$$

(ii) $\angle A + \angle D = \angle B + \angle C = 180^{\circ}$ (Angles on the same side of transversal)

$$\Rightarrow \angle A + \angle D = \angle A + \angle C (\angle A = \angle B)$$

(iii) In \triangle ABC and \triangle BAD,

,
$$\triangle ABC \cong \triangle BAD$$
 [SAS congruency]

(iv) Diagonal AC = diagonal BD by CPCT as \triangle ABC \cong \triangle BAD.